GRUNDFOS INSTRUCTIONS

CUE, 0.75 - 125 hp

Installation and operating instructions

US F E

CUE, 0.75 - 125 hp

Installation and operating instructions	4	US
Notice d'installation et de fonctionnement	47	F
Instrucciones de instalación y funcionamiento	93	E

LIMITED WARRANTY

Products manufactured by GRUNDFOS PUMPS CORPORATION (Grundfos) are warranted to the original user only to be free of defects in material and workmanship for a period of 24 months from date of installation, but not more than 30 months from date of manufacture. Grundfos' liability under this warranty shall be limited to repairing or replacing at Grundfos' option, without charge, F.O.B. Grundfos' factory or authorized service station, any product of Grundfos' manufacture. Grundfos will not be liable for any costs of removal, installation, transportation, or any other charges which may arise in connection with a warranty claim. Products which are sold but not manufactured by Grundfos are subject to the warranty provided by the manufacturer of said products and not by Grundfos' warranty. Grundfos will not be liable for damage or wear to products caused by abnormal operating conditions, accident, abuse, misuse, unauthorized alteration or repair, or if the product was not installed in accordance with Grundfos' printed installation and operating instructions.

To obtain service under this warranty, the defective product must be returned to the distributor or dealer of Grundfos' products from which it was purchased together with proof of purchase and installation date, failure date, and supporting installation data. Unless otherwise provided, the distributor or dealer will contact Grundfos or an authorized service station for instructions. Any defective product to be returned to Grundfos or a service station must be sent freight prepaid; documentation supporting the warranty claim and/or a Return Material Authorization must be included if so instructed.

GRUNDFOS WILL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, LOSSES, OR EXPENSES ARISING FROM INSTALLATION, USE, OR ANY OTHER CAUSES. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WHICH EXTEND BEYOND THOSE WARRANTIES DESCRIBED OR REFERRED TO ABOVE.

Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages and some jurisdictions do not allow limit actions on how long implied warranties may last. Therefore, the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights and you may also have other rights which vary from jurisdiction.

CONTENTS

		Page
1.	Symbols used in this document	5
2.	Introduction	5
2.1	General description	5
2.2	Applications	5
2.3	References	6
3.	Safety and warnings	6
3.1	Warning	6
3.2	Safety regulations	6
3.3	Installation requirements	6
3.4	Reduced performance under certain conditions	-
4.	Identification	7
4.1	Namepiale Packaging label	7
4.2 E		7
5.1	Recention and storage	7
5.2	Transportation and unpacking	7
5.3	Space requirements and air circulation	7
5.4	Mounting	8
6.	Electrical connection	8
6.1	Electrical protection	8
6.2	Mains and motor connection	8
6.3	Connecting the signal terminals	13
6.4	Connecting the signal relays	15
6.5	Connecting the MCB 114 sensor input module	16
6.6	EMC-correct installation	17
6.7	RFI filters	17
0.0		17
7.	Operating modes	18
8.	Control modes	18
8.1	Uncontrolled operation (open loop)	18
0.Z		19
9.	Menu overview	20
10.	Setting by means of the control panel	23
10.1	Control panel	23
10.2	Start-up quide	23
10.4	Menu GENERAL	28
10.5	Menu OPERATION	28
10.6	Menu STATUS	29
10.7	Menu INSTALLATION	31
11.	Setting by means of PC Tool E-products	38
12.	Priority of settings	39
12.1	Control without bus signal, local operating mode	39
12.2	Control with bus signal, remote-controlled operating	
	mode	39
13.	External control signals	39
13.1	Digital inputs	39
13.2	External setpoint	39
13.3	GENIbus signal	40
13.4	Other bus standards	40
14.	Maintenance and service	40
14.1	Cleaning the CUE	40
14.2		40
15.	Iroubleshooting	41
15.1	warning and alarm list Resetting of alarms	41
15.2	Indicator lights	41 41
15.4	Signal relays	41
		• •

6.	Technical data	42
6.1	Enclosure	42
6.2	Main dimensions and weight	43
6.3	Surroundings	43
6.4	Terminal tightening torques	43
6.5	Cable length	44
6.6	Fuses and cable gauge size	44
6.7	Inputs and outputs	46
6.8	Sound pressure level	46
7.	Disposal	46

Warning

Caution

Note

Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.

1. Symbols used in this document

Warning

If these safety instructions are not observed, it may result in personal injury!

If these safety instructions are not observed, it may result in malfunction or damage to the equipment!

Notes or instructions that make the job easier and ensure safe operation.

2. Introduction

This manual introduces all aspects of your Grundfos CUE variable frequency drive in the output current range of 1.8 to 177 A.

Always keep this manual close to the CUE.

2.1 General description

The CUE is a series of external variable frequency drives especially designed for pumps.

Thanks to the start-up guide in the CUE, the installer can quickly set central parameters and put the CUE into operation.

Connected to a sensor or an external control signal, the CUE will quickly adapt the pump speed to the actual demand.

2.2 Applications

The CUE series and Grundfos standard pumps are a supplement to the Grundfos E-pumps range with integrated variable frequency drive.

A CUE solution offers the same E-pump functionality

- in the supply voltage or power ranges not covered by the E-pump range.
- in applications where an integrated variable frequency drive is not desirable or permissible.

2.3 References

Technical documentation for Grundfos CUE:

- The manual contains all information required for putting the CUE into operation.
- The data booklet contains all technical information about the construction and applications of the CUE.
- Service instructions contain all required instructions for dismantling and repairing the variable frequency drive.

Technical documentation is available on www.grundfos.com > International website > WebCAPS.

If you have any questions, please contact the nearest Grundfos company or service workshop.

3. Safety and warnings

3.1 Warning

Warning

Any installation, maintenance and inspection must be carried out by trained personnel.

Warning

Touching the electrical parts may be fatal, even after the CUE has been switched off.

Before making any work on the CUE, the mains supply and other input voltages must be switched off at least for as long as stated below.

Voltage	Min. waiting time		
	4 minutes	15 minutes	20 minutes
200-240 V	1 - 5 hp	7.5 - 60 hp	
380-500 V	0.75 - 10 hp	15 - 125 hp	
525-600 V	1 - 10 hp		
525-690 V			15 - 125 hp

Wait only for shorter time if stated so on the nameplate of the CUE in question.

3.2 Safety regulations

- The On/Off button of the control panel does not disconnect the CUE from the power supply and must therefore not be used as a safety switch.
- The CUE must be grounded correctly and protected against indirect contact according to national regulations.
- The leakage current to ground exceeds 3.5 mA.
- Enclosure class NEMA 1 must not be installed freely accessible, but only in a panel.
- Enclosure class NEMA 12 must not be installed outdoors without additional protection against water and the sun.
- Always observe national and local regulations as to cable gauge size, short-circuit protection and overcurrent protection.

3.3 Installation requirements

The general safety necessitates special considerations as to these aspects:

- fuses and switches for overcurrent and short-circuit protection
- selection of cables (mains current, motor, load distribution and relay)
- net configuration (IT, TN, grounding)

Warning

· safety on connecting inputs and outputs (PELV).

3.3.1 IT mains

Do not connect 380-500 V CUE variable frequency drives to mains supplies with a voltage between phase and ground of more than 440 V.

In connection with IT mains and grounded delta mains, the supply voltage may exceed 440 V between phase and ground.

3.3.2 Aggressive environment

The CUE should not be installed in an environment where the air contains liquids, particles or gases which may affect and damage the electronic components.

The CUE contains a large number of mechanical and electronic components. They are all vulnerable to environmental effects.

3.4 Reduced performance under certain conditions

The CUE will reduce its performance under these conditions:

- low air pressure (at high altitude)
- long motor cables.

The required measures are described in the next two sections.

3.4.1 Reduction at low air pressure

Warning

At altitudes above 6600 ft, PELV cannot be met.

PELV = Protective Extra Low Voltage.

At low air pressure, the cooling capacity of air is reduced, and the CUE automatically reduces the performance to prevent overload. It may be necessary to select a CUE with a higher performance.

3.4.2 Reduction in connection with long motor cables

The maximum cable length for the CUE is 1000 ft for unscreened and 500 ft for screened cables. In case of longer cables, contact Grundfos.

The CUE is designed for a motor cable with a maximum gauge size as stated in section *16.6 Fuses and cable gauge size*.

4. Identification

4.1 Nameplate

The CUE can be identified by means of the nameplate. An example is shown below.

Fig. 1 Example of nameplate

Text	Description
T/C:	CUE (product name) 202P1M2 (internal code)
Prod. no:	Product number: 12345678
S/N:	Serial number: 123456G234 The last three digits indicate the production date: 23 is the week, and 4 is the year 2004.
1.5 kW	Typical shaft power on the motor
IN:	Supply voltage, frequency and maximum input current
OUT:	Motor voltage, frequency and maximum output current. The maximum output frequency usually depends on the pump type.
CHASSIS/ IP20	Enclosure class
Tamb.	Maximum ambient temperature

4.2 Packaging label

The CUE can also be identified by means of the label on the packaging.

5. Mechanical installation

The individual CUE cabinet sizes are characterised by their enclosures. The table in section *16.1* shows the relationship of enclosure class and enclosure type.

5.1 Reception and storage

Check on receipt that the packaging is intact, and the unit is complete. In case of damage during transport, contact the transport company to complain.

Note that the CUE is delivered in a packaging which is not suitable for outdoor storage.

5.2 Transportation and unpacking

The CUE must only be unpacked at the installation site to prevent damage during the transport to the site.

The packaging contains accessory bag(s), documentation and the unit itself. See fig. 2.

IIG. 2 COL packaging

TM04 3272 3808

5.3 Space requirements and air circulation

CUE units can be mounted side by side, but as a sufficient air circulation is required for cooling these requirements must be met:

- Sufficient free space above and below the CUE. See table below.
- Ambient temperature up to 122 °F.
- Hang the CUE directly on the wall, or fit it with a back plate. See fig. 3.

Fig. 3 CUE hung directly on the wall or fitted with a back plate

Required free space above and below the CUE

Enclosure	Space [in]
A2, A3, A5	3.9
B1, B2, B3, B4, C1, C3	7.9
C2, C4	8.9

For information about enclosure, see table in section 16.1.

5.4 Mounting

Caution The user is responsible for mounting the CUE securely on a firm surface.

- 1. Mark and drill holes. See the dimensions in section 16.2.
- 2. Fit the screws, but leave loose. Mount the CUE, and tighten the four screws.

Fig. 4 Drilling of holes

6. Electrical connection

Warning

The owner or installer is responsible for ensuring correct grounding and protection according to national and local standards.

\wedge

Warning

Before making any work on the CUE, the mains supply and other voltage inputs must be switched off for at least as long as stated in section 3. Safety and warnings.

Fig. 5 Example of three-phase mains connection of the CUE with mains switch, back-up fuses and additional protection

6.1 Electrical protection

6.1.1 Protection against electric shock, indirect contact

Warning

The CUE must be grounded correctly and protected against indirect contact according to national regulations.

The leakage current to ground exceeds 3.5 mA, and a reinforced ground connection is required.

Protective conductors must always have a yellow/green (PE) or yellow/green/blue (PEN) color marking.

Instructions according to EN IEC 61800-5-1:

- The CUE must be stationary, installed permanently and connected permanently to the mains supply.
- The ground connection must be carried out with duplicate protective conductors or with a single reinforced protective conductor with a gauge size of minimum 8 AWG.

6.1.2 Protection against short-circuit, fuses

The CUE and the supply system must be protected against shortcircuit.

Grundfos demands that the back-up fuses mentioned in section 16.6 are used for protection against short-circuit.

The CUE offers complete short-circuit protection in case of a short-circuit on the motor output.

6.1.3 Additional protection

Caution The leakage current to ground exceeds 3.5 mA.

If the CUE is connected to an electrical installation where an earth leakage circuit breaker (ELCB) is used as additional protection, the circuit breaker must be of a type marked with the following symbols:

The circuit breaker is type B.

The total leakage current of all the electrical equipment in the installation must be taken into account.

The leakage current of the CUE in normal operation can be seen in section 16.7.1 Mains supply (L1, L2, L3).

During start and in asymmetrical supply systems, the leakage current can be higher than normal and may cause the ELCB to trip.

6.1.4 Motor protection

The motor requires no external motor protection. The CUE protects the motor against thermal overloading and blocking.

6.1.5 Protection against overcurrent

The CUE has an internal overcurrent protection for overload protection on the motor output.

6.1.6 Protection against supply voltage transients

The CUE is protected against supply voltage transients according to EN 61800-3, second environment.

6.2 Mains and motor connection

The supply voltage and frequency are marked on the CUE nameplate. Make sure that the CUE is suitable for the power supply of the installation site.

The maximum output voltage of the CUE is equal to the input voltage. Example: If the supply voltage is 208 V, choose

a 208 V rated motor.

6.2.1 Mains switch

A mains switch can be installed before the CUE according to local regulations. See fig. 5.

6.2.2 Wiring diagram

The wires in the terminal box must be as short as possible. Excepted from this is the protective conductor which must be so long that it is the last one to be disconnected in case the cable is inadvertently pulled out of the cable entry.

Fig. 6 Wiring diagram, three-phase mains connection

Termin	al	Function
91	(L1)	_
92	(L2)	Three-phase supply
93	(L3)	-
95/99	(PE)	Ground connection
96	(U)	T I I I I I I I I I I I I I I I I I I I
97	(V)	 I hree-phase motor connection, 0-100 % of supply voltage
98	(W)	- Supply Voltage

For single-phase connection, use L1 and L2. Cable sizing:

To determine the conductor gauge size for single-phase mains input cable, multiply the CUE's max. current output by 2, and choose the gauge size based on that amperage.

For three-phase input, use the same conductor gauge size as selected for the motor.

For CUE to motor, use standard published threephase wiring charts based on motor size.

6.2.3 Mains connection, enclosures A2 and A3

For information about enclosure, see table in section 16.1.

Caution

Note

Check that mains voltage and frequency correspond to the values on the nameplate of the CUE and the motor.

1. Fit the mounting plate with two screws.

Fig. 7 Fitting the mounting plate

 Connect the ground conductor to terminal 95 (PE) and the mains conductors to the terminals 91 (L1), 92 (L2), 93 (L3) of the mains plug. Put the mains plug into the socket marked MAINS.

Fig. 8 Connecting the ground conductor and mains conductors

Note For single-phase connection, use L1 and L2.

3. Fix the mains cable to the mounting plate.

Fig. 9 Fixing the mains cable

TM03 9014 2807

TM03 9011 2807

6.2.4 Motor connection, enclosures A2 and A3

For information about enclosure, see table in section 16.1.

 Connect the ground conductor to terminal 99 (PE) on the mounting plate. Connect the motor conductors to the terminals 96 (U), 97 (V), 98 (W) of the motor plug.

Fig. 10 Connecting the ground conductor and motor conductors

2. Put the motor plug into the socket marked MOTOR. Fix the screened cable to the mounting plate with a cable clamp.

Fig. 11 Connecting the motor plug and fixing the screened cable

Note

Note

Cable screens must be grounded at both ends.

The cable screen must be exposed and in
 physical contact with the mounting plate and clamp.

6.2.5 Enclosure A5

For information about enclosure, see table in section 16.1.

Mains connection

Check that mains voltage and frequency Caution correspond to the values on the nameplate of the CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE). See fig. 12.
- 2. Connect the mains conductors to the terminals 91 (L1), 92 (L2), 93 (L3) of the mains plug.
- 3. Put the mains plug into the socket marked MAINS.
- 4. Fix the mains cable with a cable clamp.

Fig. 12 Mains connection, A5

Motor connection

TM03 9013 2807

Caution The motor cable must be screened for the CUE to meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE). See fig. 13.
- Connect the motor conductors to the terminals 96 (U), 97 (V), 98 (W) of the motor plug.
- 3. Put the motor plug into the socket marked MOTOR.
- 4. Fix the screened cable with a cable clamp.

TM03 9018 2807

FM03 9017 2807

Fig. 13 Motor connection, A5

Note p

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.2.6 Enclosures B1 and B2

For information about enclosure, see table in section 16.1.

Mains connection

Caution

Check that mains voltage and frequency correspond to the values on the nameplate of the CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE). See fig. 14.
- 2. Connect the mains conductors to the terminals 91 (L1), 92 (L2), 93 (L3).
- 3. Fix the mains cable with a cable clamp.

Fig. 14 Mains connection, B1 and B2

For single-phase connection, use L1 and L2. Note

Motor connection

The motor cable must be screened for the CUE to meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE). See fig. 15.
- 2. Connect the motor conductors to the terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

Fig. 15 Motor connection, B1 and B2

6.2.7 Enclosures B3 and B4

For information about enclosure, see table in section 16.1.

Mains connection

Check that mains voltage and frequency Caution correspond to the values on the nameplate of the CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE). See figs 16 and 17.
- 2. Connect the mains conductors to the terminals 91 (L1), 92 (L2), 93 (L3).
- 3. Fix the mains cable with a cable clamp.

Motor connection

The motor cable must be screened for the CUE to Caution meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE). See figs 16 and 17.
- 2. Connect the motor conductors to the terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

Fig. 16 Mains and motor connection, B3

TM03 9019 2807

TM03 9020 2807

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

Fig. 17 Mains and motor connection, B4

TM03 9449 4007

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.2.8 Enclosures C1 and C2

For information about enclosure, see table in section 16.1.

Mains connection

Check that mains voltage and frequency correspond to the values on the nameplate of the Caution CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE). See fig. 18.
- 2. Connect the mains conductors to the terminals 91 (L1), 92 (L2), 93 (L3).

Motor connection

The motor cable must be screened for the CUE to Caution meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE). See fig. 18.
- 2. Connect the motor conductors to the terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

Fig. 18 Mains and motor connection, C1 and C2

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.2.9 Enclosures C3 and C4

For information about enclosure, see table in section 16.1.

Mains connection

Caution

Check that mains voltage and frequency correspond to the values on the nameplate of the CUE and the motor.

- 1. Connect the ground conductor to terminal 95 (PE). See figs 19 and 20
- 2. Connect the mains conductors to the terminals 91 (L1), 92 (L2), 93 (L3).

Motor connection

The motor cable must be screened for the CUE to Caution meet EMC requirements.

- 1. Connect the ground conductor to terminal 99 (PE). See figs 19 and 20.
- 2. Connect the motor conductors to the terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

Fig. 19 Mains and motor connection, C3

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

TM03 9448 4007

TM03 9447 4007

Fig. 20 Mains and motor connection, C4

The cable screen must be exposed and in physical contact with the mounting plate and clamp.

6.3 Connecting the signal terminals

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

Note

If no external on/off switch is connected, shortcircuit terminals 18 and 20 using a short wire.

Connect the signal cables according to the guidelines for good practice to ensure EMC-correct installation. See section *6.6 EMC-correct installation*.

- Use screened signal cables with a conductor gauge size of min. 22 AWG and max. 16 AWG.
- Use a 3-conductor screened bus cable in new systems.

6.3.1 Wiring diagram, signal terminals

Fig. 21 Wiring diagram, signal terminals

Terminal	Туре	Function
12	+24 V out	Supply to sensor
13	+24 V out	Additional supply
18	DI 1	Digital input, start/stop
19	DI 2	Digital input, programmable
20	GND	Ground for digital inputs
32	DI 3	Digital input, programmable
33	DI 4	Digital input, programmable
39	GND	Ground for analog output
42	AO 1	Analog output, 0-20 mA
50	+10 V out	Supply to potentiometer
53	AI 1	External setpoint, 0-10 V/0/4-20 mA
54	AI 2	Sensor input, sensor 1, 0/4-20 mA
55	GND	Ground for analog inputs
61	RS-485 GND Y	GENIbus, GND
68	RS-485 A	GENIbus, signal A (+)
69	RS-485 B	GENIbus, signal B (-)

Terminals 27, 29 and 37 are not used.

TM03 8800 2507

6.3.2 Minimum connection, signal terminals

Operation is only possible when the terminals 18 and 20 are connected, for instance by means of an external on/off switch or a short wire.

Fig. 22 Required minimum connection, signal terminals

TM03 9057 3207

6.3.3 Access to signal terminals

US

All signal terminals are behind the terminal cover of the CUE front. Remove the terminal cover as shown in figs 23 and 24.

Fig. 23 Access to signal terminals, A2 and A3

Fig. 24 Access to signal terminals, A5, B1, B2, B3, B4, C1, C2, C3 and C4

Fig. 25 Signal terminals (all enclosures)

6.3.4 Fitting the conductor

- 1. Remove the insulation at a length of 0.34 0.39 in (9-10 mm).
- 2. Insert a screwdriver with a tip of maximum 0.015 x 0.1 in (0.4 x 2.5 mm) into the square hole.
- Insert the conductor into the corresponding round hole. Remove the screwdriver. The conductor is now fixed in the terminal.

Fig. 26 Fitting the conductor into the signal terminal

6.3.5 Setting the analog inputs, terminals 53 and 54

The contacts A53 and A54 are positioned behind the control panel and used for setting the signal type of the two analog inputs.

The factory setting of the inputs is voltage signal "U".

Note

TM03 9003 2807

TM03 9004 2807

TM03 9025 2807

If a 0/4-20 mA sensor is connected to terminal 54, the input must be set to current signal "I". Switch off the power supply before setting the A54.

Remove the control panel to set the contact. See fig. 27.

Fig. 27 Setting contact A54 to current signal "I"

6.3.6 RS-485 GENIbus network connection

One or more CUE units can be connected to a control unit via GENIbus. See the example in fig. 28.

Fig. 28 Example of an RS-485 GENIbus network

The reference potential, GND, for RS-485 (Y) communication must be connected to terminal 61.

If more than one CUE unit is connected to a GENIbus network, the termination contact of the last CUE must be set to "ON" (termination of the RS-485 port).

The factory setting of the termination contact is "OFF" (not terminated).

Remove the control panel to set the contact. See fig. 29.

Fig. 29 Setting the termination contact to "ON"

6.4 Connecting the signal relays

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

Fig. 30 Terminals for signal relays in normal state (not activated)

Termir	nal	Function
C 1	C 2	Common
NO 1	NO 2	Normally open contact
NC 1	NC 2	Normally closed contact

Access to signal relays

The relay outputs are positioned as shown in figs 31 to 36.

Fig. 31 Terminals for relay connection, A2 and A3

Fig. 32 Terminals for relay connection, A5, B1 and B2

Fig. 33 Terminals for relay connection, C1 and C2

TM03 9008 2807

TM03 9007 2807

TM03 9009 2807

Fig. 34 Terminals for relay connection, B3

Fig. 35 Terminals for relay connection, B4

Fig. 36 Terminals for relay connection, C3 and C4, in the upper right corner of the CUE

6.5 Connecting the MCB 114 sensor input module

The MCB 114 is an option offering additional analog inputs for the $\ensuremath{\mathsf{CUE}}$.

6.5.1 Configuration of the MCB 114

The MCB 114 is equipped with three analog inputs for these sensors:

- One additional sensor 0/4-20 mA. See section 10.7.13 Sensor 2 (3.16).
- Two Pt100/Pt1000 temperature sensors for measurement of motor bearing temperature or an alternative temperature, such as liquid temperature. See sections 10.7.18 Temperature sensor 1 (3.21) and 10.7.19 Temperature sensor 2 (3.22).

When the MCB 114 has been installed, the CUE will automatically detect if the sensor is Pt100 or Pt1000 when it is switched on.

6.5.2 Wiring diagram, MCB 114

TM03 9442 4007

FM03 9441 4007

TM03 9440 4007

TM04 3273 3908

Fig. 37 Wiring diagram, MCB 114

Terminal	Туре	Function
1 (VDO)	+24 V out	Supply to sensor
2 (I IN)	AI 3	Sensor 2, 0/4-20 mA
3 (GND)	GND	Ground for analog input
4 (TEMP) 5 (WIRE)	AI 4	Temperature sensor 1, Pt100/Pt1000
6 (GND)	GND	Ground for temperature sensor 1
7 (TEMP) 8 (WIRE)	AI 5	Temperature sensor 2, Pt100/Pt1000
9 (GND)	GND	Ground for temperature sensor 2

Terminals 10, 11 and 12 are not used.

6.6 EMC-correct installation

This section gives guidelines for good practice when installing the CUE. Follow these guidelines to meet EN 61800-3, first environment.

- Use only motor and signal cables with a braided metal screen in applications without output filter.
- There are no special requirements to supply cables, apart from local requirements.
- Leave the screen as close to the connecting terminals as possible. See fig. 38.
- Avoid terminating the screen by twisting the ends. See fig. 39. Use cable clamps or EMC screwed cable entries instead.
- Connect the screen to ground at both ends for both motor and signal cables. See fig. 40. If the controller has no cable clamps, connect only the screen to the CUE. See fig. 41.
- Avoid unscreened motor and signal cables in electrical cabinets with variable frequency drives.
- Make the motor cable as short as possible in applications without output filter to limit the noise level and minimise leakage currents.
- Screws for ground connections must always be tightened whether a cable is connected or not.
- Keep main cables, motor cables and signal cables separated in the installation, if possible.

Other installation methods may give similar EMC results if the above guidelines for good practice are followed.

Fig. 38 Example of stripped cable with screen

Fig. 39 Do not twist the screen ends

Fig. 40 Example of connection of a 3-conductor bus cable with screen connected at both ends

-M03 8731 2407

Fig. 41 Example of connection of a 3-conductor bus cable with screen connected at the CUE (controller with no cable clamps)

6.7 RFI filters

To meet the EMC requirements, the CUE comes with the following types of built-in radio frequency interference filter (RFI):

Voltage	Typical shaft power P2	RFI filter type
1 x 200-240 V*	1.5 - 10 hp	C1
3 x 200-240 V	1 - 60 hp	C1
3 x 380-500 V	0.75 - 125 hp	C1
3 x 525-600 V	1 - 10 hp	C3
3 x 525-690 V	15 - 125 hp	C3

* Single-phase input - three-phase output.

Description of RFI filter types

C1:	For use in domestic areas
<u></u>	For use in industrial areas with own low-voltage
05.	transformer

RFI filter types are according to EN 61800-3.

6.7.1 Equipment of category C3

- This type of power drive system (PDS) is not intended to be used on a low-voltage public network which supplies domestic premises.
- Radio frequency interference is expected if used on such a network.

6.8 Output filters

FM02 1325 0901

TM03 8812 2507

Output filters are used for reducing the voltage stress on the motor windings and the stress on the motor insulation system as well as for decreasing acoustic noise from the variable-frequency-driven motor.

Two types of output filter are available as accessories for the CUE:

- dU/dt filters
- sine-wave filters.

Use of output filters

Pump type	Typical shaft power P2	dU/dt filter [ft]	Sine-wave filter [ft]
SP, BM, BMB with	Up to 10 hp	-	0-1000
380 V motor and up	15 hp and up	0-500	500-1000
Other pumps, noise reduction	Up to 10 hp	-	0-1000
	15 hp and up	0-500	500-1000
Other pumps, higher	Up to 10 hp	-	0-1000
noise reduction	15 hp and up	-	0-1000
Pumps with 690 V motor	All	-	0-1000

The lengths stated apply to the motor cable.

Fig. 42 Example of installation without filter

Fig. 43 Example of installation with filter. The cable between the CUE and filter must be short.

Fig. 44 Submersible pump without connection box. Variable frequency drive and filter installed close to the well.

* Both ends of the screened cable between filter and connection box must be connected to ground.

Fig. 45 Submersible pump with connection box and screened cable. Variable frequency drive and filter installed close to the well.

7. Operating modes

The following operating modes are set on the control panel in menu OPERATION, display 1.2. See section 10.5.2.

Operating mode	Description
Normal	The pump is running in the control mode selected.
Stop	The pump has been stopped (green indicator light is flashing).
Min.	The pump is running at minimum speed.
Max.	The pump is running at maximum speed.

Example: Max. curve operation can for instance be used in connection with venting the pump during installation.

Example: Min. curve operation can for instance be used in periods with a very small flow requirement.

8. Control modes

The control mode is set on the control panel in menu INSTALLATION, display 3.1. See section 10.7.1. There are two basic control modes:

- Uncontrolled operation (open loop)
- Controlled operation (closed loop) with a sensor connected. • See sections 8.1 and 8.2.

8.1 Uncontrolled operation (open loop)

Example: Operation on constant curve can for instance be used for pumps with no sensor connected.

Example: Typically used in connection with an overall control system such as the MPC or another external controller.

8.2 Controlled operation (closed loop)

US

Fig. 46 Menu overview

Menu structure

The CUE has a start-up guide, which is started at the first startup. After the start-up guide, the CUE has a menu structure divided into four main menus:

- 1. **GENERAL** gives access to the start-up guide for the general setting of the CUE.
- 2. **OPERATION** enables the setting of setpoint, selection of operating mode and resetting of alarms. It is also possible to see the latest five warnings and alarms.
- 3. **STATUS** shows the status of the CUE and the pump. It is not possible to change or set values.
- INSTALLATION gives access to all parameters. Here a detailed setting of the CUE can be made.

10. Setting by means of the control panel

10.1 Control panel

Warning

The On/Off button on the control panel does not disconnect the CUE from the power supply and must therefore not be used as a safety switch.

The On/Off button has the highest priority. In "off" condition, pump operation is not possible.

The control panel is used for local setting of the CUE. The functions available depend on the pump family connected to the CUE.

Fig. 47 Control panel of the CUE

Editing buttons

Button	Function
On/ Off	Makes the pump ready for operation/starts and stops the pump.
OK	Saves changed values, resets alarms and expands the value field.
(\bullet)	Changes values in the value field.

Navigating buttons

Button	Function
< >	Navigates from one menu to another. When the menu is changed, the display shown will always be the top display of the new menu.
	Navigates up and down in the individual menu.

The editing buttons of the control panel can be set to these values:

- Active
- Not active.

When set to *Not active* (locked), the editing buttons do not function. It is only possible to navigate in the menus and read values.

Activate or deactivate the buttons by pressing the arrow up and arrow down buttons simultaneously for 3 seconds.

Adjusting the display contrast

Press OK and + for darker display.

Press OK and - for brighter display.

Indicator lights

The operating condition of the pump is indicated by the indicator lights on the front of the control panel. See fig. 47.

The table show the function of the indicator lights.

light	Function
	The pump is running or has been stopped by a stop function.
On (green)	If flashing, the pump has been stopped by the user (CUE menu), external start/stop or bus.
Off (orange)	The pump has been stopped with the On/Off button.
Alarm (red)	Indicates an alarm or a warning.

Displays, general terms

TM03 8719 2507

Figures 48 and 49 shows the general terms of the display.

Current display / total number

Fig. 49 Example of display in the user menu

10.2 Back to factory setting

Follow this procedure to get back to the factory setting:

- 1. Switch off the power supply to the CUE.
- 2. Press On/Off, OK and + while switching on the power supply.

The CUE will reset all parameters to factory settings. The display will turn on when the reset is completed.

Check that equipment connected is ready for start-up, and that the CUE has been connected to power supply.

Have nameplate data for motor, pump and CUE at hand.

Use the start-up guide for the general setting of the CUE including the setting of the correct direction of rotation.

The start-up guide is started the first time when the CUE is connected to supply voltage. It can be restarted in menu GENERAL. Please note that in this case all previous settings will be erased.

Bulleted lists show possible settings. Factory settings are shown in bold.

10.3.1 Welcoming display

• Press OK. You will now be guided through the start-up guide.

10.3.2 Language (1/16)

Select the language to be used in the display:

٠ Dutch

•

Greek

Swedish

Finnish

- English UK
- English US ٠
- German

Spanish

- French ٠
- Italian
- Danish Polish
- Russian

Portuguese 10.3.3 Units (2/16)

Select the units to be used in the display:

- SI: m, kW, bar...
- US: ft, HP, psi...

- Hungarian
- Chinese
- Japanese

10.3.4 Pump family (3/16)

Select pump family according to the pump nameplate:

- CR, CRI, CRN, CRT
- SP. SP-G. SP-NE
- ...

Select "Other" if the pump family is not on the list.

10.3.5 Rated motor power (4/16)

Motor name Motor powe	plate r, P2	
4.	00 kW	Ф
< Previous	4/16	Next >

Set the rated motor power, P2, according to the motor nameplate:

• 0.75 - 125 HP (0.55 - 90 kW).

The setting range is size-related, and the factory setting corresponds to the rated power of the CUE.

10.3.6 Supply voltage (5/16)

Supply volta	ge	
3×40)0V	Ф
< Previous	5/16	Next >

Select supply voltage according to the rated supply voltage of the installation site.

Unit 1 x 200-240 V:*	Unit 3 x 200-240 V:	Unit 3 x 380-500 V:
• 1 x 200 V	• 3 x 200 V	• 3 x 380 V
• 1 x 208 V	• 3 x 208 V	• 3 x 400 V
• 1 x 220 V	• 3 x 220 V	• 3 x 415 V
• 1 x 230 V	• 3 x 230 V	• 3 x 440 V
• 1 x 240 V.	• 3 x 240 V.	• 3 x 460 V
		• 3 x 500 V.
Unit 3 x 525-600 V:	Unit 3 x 525-690 V:	
• 3 x 575 V.	• 3 x 575 V	
	• 3 x 690 V.	

* Single-phase input - three-phase output.

The setting range depends on the CUE type, and the factory setting corresponds to the rated supply voltage of the CUE.

- - Korean.
 - Czech

10.3.7 Max. motor current (6/16)

Set the maximum motor current according to the motor nameplate:

• 0-999 A.

The setting range depends on the CUE type, and the factory setting corresponds to a typical motor current at the motor power selected.

10.3.8 Speed (7/16)

Set the rated speed according to the pump nameplate:

• 0-9999 rpm.

The factory setting depends on previous selections. Based on the set rated speed, the CUE will automatically set the motor frequency to 50 or 60 Hz.

10.3.9 Frequency (7A/16)

<Previous 7A/16 Next>

This display appears only if manual entering of the frequency is required.

Set the frequency according to the motor nameplate:

- 40-200 Hz.
- The factory setting depends on previous selections.

10.3.10 Control mode (8/16)

Select the desired control mode. See section 10.7.1.

- Open loop
- Const. pressure
- Const. diff. pressure
- Prop. diff. pressure
- Const. flow rate
- Const. temperature
- Constant level
- Const. other value.

The possible settings and the factory setting depend on the pump family.

The CUE will give an alarm if the control mode selected requires a sensor and no sensor has been installed. To continue the setting without a sensor, select "Open loop", and proceed. When a sensor has been connected, set the sensor and control mode in menu INSTALLATION.

10.3.11 Rated flow rate (8A/16)

This display appears only if the control mode selected is proportional differential pressure.

Set the rated flow rate according to the pump nameplate:

1-28840 gpm (1-6550 m³/h).

10.3.12 Rated head (8B/16)

This display only appears if the control mode selected is proportional differential pressure.

Set the rated head according to the pump nameplate:

• 1-3277 ft (1-999 m).

10.3.13 Sensor connected to terminal 54 (9/16)

Set the measuring range of the connected sensor with a signal range of 4-20 mA. The measuring range depends on the control mode selected:

Proportional differential	Constant differential pressure:	
pressure:		
• 0-20 ft	• 0-20 ft	
• 0-33 ft	• 0-33 ft	
• 0-54 ft	• 0-54 ft	
• 0-84 ft	• 0-84 ft	
• 0-200 ft	• 0-200 ft	
• 0-334 ft	• 0-334 ft	
Other.	Other.	
Constant pressure:	Constant flow rate:	
• 0-58 psi	• Other.	
• 0-87 psi		
• 0-120 psi		
• 0-145 psi		
• 0-232 psi		
• 0-362 psi		
• 0-580 psi		
• 0-870 psi		
• Other.		
Constant temperature:	Constant level:	
• Other	• Other	

If the control mode selected is "Const. other value", or if the measuring range selected is "Other", the sensor must be set according to the next section, display 9A/16.

10.3.14 Another sensor connected to terminal 54 (9A/16)

<Previous 9A/16 Next>

This display only appears when the control mode "Const. other value" or the measuring range "Other" has been selected in display 9/16.

- Sensor output signal: 0-20 mA 4-20 mA.
- Unit of measurement of sensor: bar, mbar, m, kPa, psi, ft, m³/h, m³/min, m³/s, l/h, l/min, l/s, gal/h, gal/m, gal/s, ft³/h, ft³/min, ft³/s, °C, °F, %.
- Sensor measuring range.

The measuring range depends on the sensor connected and the measuring unit selected.

10.3.15 Priming and venting (10/16)

< Previous 10/16

See the installation and operating instructions of the pump.

The general setting of the CUE is now completed, and the startup guide is ready for setting the direction of rotation:

 Press OK to go on to automatic or manual setting of the direction of rotation.

10.3.16 Automatic setting of the direction of rotation (11/16)

Note

Warning

During the test, the pump will run for a short time. Ensure no personnel or equipment is in danger!

Before setting the direction of rotation, the CUE will make an automatic motor adaptation of certain pump types. This will take a few minutes. The adaptation is carried out during standstill.

The CUE automatically tests and sets the correct direction of rotation without changing the cable connections.

This test is not suitable for certain pump types and will in certain cases not be able to determine for certainty the correct direction of rotation. In these cases, the CUE changes over to manual setting where the direction of rotation is determined on the basis of the installer's observations.

The CUE will now make a motor parameter test and check if the pump is turning in the right...

...that the system is open for flow. The pump will be running during the test. Press OK to continue.

< Previous 11/16</pre>

Information displays.

• Press OK to continue.

The pump starts after 10 seconds.

It is possible to interrupt the test and return to the previous display.

Testing the c rotation. To any button.	lirection of interrupt, press
0%	100 %
	13/16

The pump runs with both directions of rotation and stops automatically.

It is possible to interrupt the test, stop the pump and go to manual setting of the direction of rotation.

Test completed and correct direction of rotation is now set. Press OK to continue.

< Previous 14/16</pre>

The correct direction of rotation has now been set.

 Press OK to set the setpoint.
 See Setpoint (15/16) on page 26.

10.3.17 Setpoint (15/16)

Set the setpoint according to the control mode and sensor selected.

It could not automatically be determined if the direction of rotation is correct. Press OK to go to manual test.

< Previous 13/16</pre>

The automatic setting of the direction of rotation has failed.

Press OK to go to manual setting of the direction of rotation.

...direction. If not, the direction of rotation will automatically be changed. Make sure...

<Previous 11/16 Next>

10.3.18 General settings are completed (16/16)

Press OK to make the pump ready for operation or start the pump in the operating mode Normal. Then display 1.1 of menu **OPERATION** will appear.

10.3.19 Manual setting when the direction of rotation is visible (13/16)

It must be possible to observe the motor fan or shaft.

Information displays.

· Press OK to continue.

The pump starts after 10 seconds.

It is possible to interrupt the test and return to the previous display.

The pressure will be shown during the test if a pressure sensor is connected. The motor current is always shown during the test.

State if the direction of rotation is correct.

The correct direction of rotation has now been set.

· Press OK to set the setpoint. See Setpoint (15/ 16) on page 26.

• No	
The direction of rotat will be changed, and a test be made. Press OK to continue.	ion new

< Previous 13/16</pre> The direction of rotation is not correct.

· Press OK to repeat the test with the opposite direction of rotation.

10.3.20 Manual setting when the direction of rotation is not visible (13/16)

It must be possible to observe the head or flow rate.

Manual direction of rotation test. Observe the head/flow rate of the pump while...

highest head/flow rate. Press OK to continue.

...it is running for a few seconds, first in one and then in the other direction. See...

<Previous 13/16 Next >

US

Press OK to continue.

The pump starts after 10 seconds.

It is possible to interrupt the test and return to the previous display.

The pressure will be shown during the test if a pressure sensor is connected. The motor current is always shown during the test.

The direction of rotation will be changed, and the second test will be made. Press OK to continue.

< Previous 13/16</pre>

The first test is completed.

Write down the pressure and/or flow rate, and press OK to continue the manual test with the opposite direction of rotation

The pump starts after 10 seconds.

27

eedback		
0.00 bar		
1otor current		
0.00 A		
10/10		

The pressure will be shown during the test if a pressure sensor is connected. The motor current is always shown during the test.

The second test is completed.

Write down the pressure and/or flow rate, and state which test gave the highest pump performance:

- First test
- · Second test
- Make new test.

< Previous 14/16</pre>

The correct direction of rotation has now been set.

• Press OK to set the setpoint. See Setpoint (15/16) on page 26.

10.4 Menu GENERAL

Note

Note

If the start-up guide is started, all previous settings will be erased!

The start-up guide must be carried out on a cold motor!

Repeating the start-up guide may lead to a heating of the motor.

The menu makes it possible to return to the start-up guide, which is usually only used during the first start-up of the CUE.

10.4.1 Return to start-up guide (0.1)

State your choice:

- Yes
- No.

If Yes is selected, all settings will be erased, and the entire startup guide must be completed.

10.4.2 Type code change (0.2)

This display is for service use only.

10.4.3 Copy of settings

It is possible to copy the settings of a CUE and reuse them in another one.

Options:

- No copy.
- to CUE (copies the settings of the CUE).
- to control panel (copies the settings to another CUE).

The CUE units must have the same firmware version. See section 10.6.16 Firmware version (2.16).

10.5 Menu OPERATION

10.5.1 Setpoint (1.1)

- Setpoint set
- Actual setpoint
- Actual value

Set the setpoint in units of the feedback sensor.

In control mode **Open loop**, the setpoint is set in % of the maximum performance. The setting range will lie between the min. and max. curves. See fig. 56.

In **all other** control modes except proportional differential pressure, the setting range is equal to the sensor measuring range. See fig. 57.

In control mode **Proportional differential pressure**, the setting range is equal to 25 % to 90 % of max. head. See fig. 58.

If the pump is connected to an external setpoint signal, the value in this display will be the maximum value of the external setpoint signal. See section *13.2 External setpoint*.

10.5.2 Operating mode (1.2)

Set one of the following operating modes:

- Normal (duty)
- Stop
- Min.
- Max

The operating modes can be set without changing the setpoint setting.

10.5.3 Fault indications

Faults may result in two types of indication: Alarm or warning. An **"alarm"** will activate an alarm indication in CUE and cause the pump to change operating mode, typically to stop. However, for some faults resulting in alarm, the pump is set to continue operating even if there is an alarm.

A **"warning"** will activate a warning indication in CUE, but the pump will not change operating or control mode.

Alarm (1.3)

In case of an alarm, the cause will appear in the display. See section *15.1 Warning and alarm list*.

Warning (1.4)

In case of warning, the cause will appear in the display. See section 15.1 Warning and alarm list.

10.5.4 Fault log

For both fault types, alarm and warning, the CUE has a log function.

Alarm log (1.5-1.9)

In case of an "alarm", the last five alarm indications will appear in the alarm log. "Alarm log 1" shows the latest alarm, "Alarm log 2" shows the latest alarm but one, etc.

The display shows three pieces of information:

- the alarm indication
- the alarm code
- the number of minutes the pump has been connected to the power supply after the alarm occurred.

Warning log (1.10-1.14)

Warnin	ig log 1	4	
240 /	2006	Omin	
Relubr bearin	ricate mot gs	or	
\diamond	1.10 oper	ATION D	l

In case of a "warning", the last five warning indications will appear in the warning log. "Warning log 1" shows the latest fault, "Warning log 2" shows the latest fault but one, etc.

The display shows three pieces of information:

- the warning indication
- the warning code
- the number of minutes the pump has been connected to the power supply after the warning occurred.

10.6 Menu STATUS

The displays appearing in this menu are status displays only. It is not possible to change or set values.

The tolerance of the displayed value is stated under each display. The tolerances are stated as a guide in % of the maximum values of the parameters.

10.6.1 Actual setpoint (2.1)

This display shows the actual setpoint and the external setpoint. The **actual setpoint** is shown in units of feedback sensor.

The **external setpoint** is shown in a range of 0-100 %. If the external setpoint influence is disactivated, the value 100 % is shown. See section 13.2 External setpoint.

10.6.2 Operating mode (2.2)

This display shows the actual operating mode (*Normal, Stop, Min.* or *Max.*). Furthermore, it shows where this operating mode was selected (*CUE menu, Bus, External* or *On/off button*).

10.6.3 Actual value (2.3)

This display shows the actual value controlled.

If no sensor is connected to the CUE, "–" will appear in the display.

This display shows the actual value measured by sensor 1 connected to terminal 54.

If no sensor is connected to the CUE, "-" will appear in the display.

10.6.5 Measured value, sensor 2 (2.5)

This display is only shown if an MCB 114 sensor input module has been installed.

This display shows the actual value measured by sensor 2 connected to an MCB 114.

If no sensor is connected to the CUE, "-" will appear in the display.

10.6.6 Speed (2.6)

Tolerance: ± 5 %

This display shows the actual pump speed.

10.6.7 Input power and motor current (2.7)

Tolerance: ± 10 %

This display shows the actual pump input power in W or kW and the actual motor current in Ampere [A].

10.6.8 Operating hours and power consumption (2.8)

Tolerance: ± 2 %

This display shows the number of operating hours and the power consumption. The value of operating hours is an accumulated value and cannot be reset. The value of power consumption is an accumulated value calculated from the unit's birth, and it cannot be reset.

10.6.9 Lubrication status of motor bearings (2.9)

This display shows how many times the user has given the lubricated information and when to replace the motor bearings. When the motor bearings have been relubricated, confirm this action in the INSTALLATION menu. See section

10.7.17 Confirming relubrication/replacement of motor bearings (3.20). When relubrication is confirmed, the figure in the above display will be increased by one.

10.6.10 Time until relubrication of motor bearings (2.10)

This display is only shown if display 2.11 is not shown.

This display shows when to relubricate the motor bearings. The controller monitors the operating pattern of the pump and calculates the period between bearing relubrications. If the operating pattern changes, the calculated time till relubrication may change as well.

The estimated time until relubrication takes into account if the pump has been running with reduced speed.

See section 10.7.17 Confirming relubrication/replacement of motor bearings (3.20).

10.6.11 Time until replacement of motor bearings (2.11)

This display is only shown if display 2.10 is not shown. This display shows when to replace the motor bearings.

The controller monitors the operating pattern of the pump and calculates the period between bearing replacements.

The estimated time until replacement of motor bearings takes into account if the pump has been running with reduced speed. See section 10.7.17 Confirming relubrication/replacement of

motor bearings (3.20).

10.6.12 Temperature sensor 1 (2.12)

Temperature sensor 1		
Not active		
	0 °C	U V
¢	2.12 STATUS	Ŵ

This display is only shown if an MCB 114 sensor input module has been installed.

This display shows the measuring point and the actual value measured by Pt100/Pt1000 temperature sensor 1 connected to the MCB 114. The measuring point is selected in display 3.21. If no sensor is connected to the CUE, "-" will appear in the display.

30

10.6.13 Temperature sensor 2 (2.13)

This display is only shown if an MCB 114 sensor input module has been installed.

This display shows the measuring point and the actual value measured by Pt100/Pt1000 temperature sensor 2 connected to the MCB 114. The measuring point is selected in display 3.22. If no sensor is connected to the CUE, "-" will appear in the display.

10.6.14 Flow rate (2.14)

This display is only shown if a flowmeter has been configured. This display shows the actual value measured by a flowmeter connected to the digital pulse input (terminal 33) or the analog input (terminal 54).

10.6.15 Accumulated flow (2.15)

This display is only shown if a flowmeter has been configured. This display shows the value of the accumulated flow and the specific energy for the transfer of the pumped liquid.

The flow measurement can be connected to the digital pulse input (terminal 33) or the analog input (terminal 54).

10.6.16 Firmware version (2.16)

This display shows the version of the software.

10.6.17 Configuration file (2.17)

This display shows the configuration file.

10.7 Menu INSTALLATION

10.7.1 Control mode (3.1)

Select one of the following control modes:

- Open loop
- Const. pressure
- Const. diff. pressure
- Prop. diff. pressure
- · Const. flow rate
- Const. temperature
- Constant level
- Const. other value.

If the pump is connected to a bus, the control mode cannot be selected via the CUE. See section 13.3 GENIbus signal.

10.7.2 Controller (3.2)

The CUE has a factory setting of gain (K_p) and integral time (T_i). However, if the factory setting is not the optimum setting, the gain and the integral time can be changed in the display.

- The gain (K_p) can be set within the range from 0.1 to 20.
- The integral time (T_i) can be set within the range from 0.1 to 3600 s. If 3600 s is selected, the controller will function as a P controller.
- Furthermore, it is possible to set the controller to inverse control, meaning that if the setpoint is increased, the speed will be reduced. In the case of inverse control, the gain (K_p) must be set within the range from -0.1 to -20.

US

	К _р			
System/application	Heating system ¹⁾	Cooling system ²⁾	Τi	
	0.	.2	0.5	
	SP, SP-G, SP-NE: 0.5		0.5	
CUE	0.2		0.5	
	SP, SP-G, SP-NE: 0.5		0.5	
	0.2		0.5	
	-2	2.5	100	
	0.5	-0.5	10 + 5L ₂	
	0.	.5	10 + 5L ₂	
	0.5	-0.5	30 + 5L ₂ *	
	0.	.5	0.5*	
	0.	.5	L ₁ < 5 m: 0.5* L ₁ > 5 m: 3* L ₁ > 10 m: 5*	

* T_i = 100 seconds (factory setting).

- 1. Heating systems are systems in which an increase in pump performance will result in a **rise** in temperature at the sensor.
- 2. Cooling systems are systems in which an increase in pump performance will result in a **drop** in temperature at the sensor.
- $L_1 =$ Distance in [m] between pump and sensor.
- L_2 = Distance in [m] between heat exchanger and sensor.

How to set the PI controller

For most applications, the factory setting of the controller constants K_p and T_i will ensure optimum pump operation. However, in some applications an adjustment of the controller may be needed.

Proceed as follows:

- Increase the gain (K_p) until the motor becomes unstable. Instability can be seen by observing if the measured value starts to fluctuate. Furthermore, instability is audible as the motor starts hunting up and down. As some systems, such as temperature controls, are slowreacting, it may be difficult to observe that the motor is unstable.
- 2. Set the gain (K_p) to half the value of the value which made the motor unstable. This is the correct setting of the gain.
- 3. Reduce the integral time (T_i) until the motor becomes unstable.
- Set the integral time (T_i) to twice the value which made the motor unstable. This is the correct setting of the integral time. General rules of thumb:
- If the controller is too slow-reacting, increase Kp.
- If the controller is hunting or unstable, dampen the system by reducing K_p or increasing T_i.

10.7.3 External setpoint (3.3)

The input for external setpoint signal (terminal 53) can be set to the following types:

- Active
- Not active.

If *Active* is selected, the actual setpoint is influenced by the signal connected to the external setpoint input. See section *13.2 External setpoint*.

10.7.4 Signal relays 1 and 2 (3.4 and 3.5)

The CUE has two signal relays. In the display below, select in which operating situations the signal relay should be activated.

- Operation
- Pump running
- Not active
- Warning
- Relubricate.

Signal relay 2 activated 3.5 INSTALLATION Operation Pump running Not active

- Warning
- Relubricate.

For distinction between alarm and warning, Note see section 10.5.3 Fault indications.

10.7.5 Buttons on the CUE (3.6)

The editing buttons (+, -, On/Off, OK) on the control panel can be set to these values:

- Active
- Not active.

When set to Not active (locked), the editing buttons do not function. Set the buttons to Not active if the pump should be controlled via an external control system.

Activate the buttons by pressing the arrow up and arrow down buttons simultaneously for 3 seconds.

10.7.6 Protocol (3.7)

This display shows the protocol selection for the RS-485 port of the CUE. The protocol can be set to these values:

- GENIbus
- FC
- FC MC.

If GENIbus is selected, the communication is set according to the Grundfos GENIbus standard. FC and FC MC is for service purpose only.

10.7.7 Pump number (3.8)

This display shows the GENIbus number. A number between 1 and 199 can be allocated to the pump. In the case of bus communication, a number must be allocated to each pump. The factory setting is "-".

10.7.8 Digital inputs 2, 3 and 4 (3.9 to 3.11)

The digital inputs of the CUE (terminal 19, 32 and 33) can individually be set to different functions.

Select one of the following functions:

- Min. (min. curve)
- Max. (max. curve)
- Ext. fault (external fault)
- Flow switch
- Alarm reset
- Dry running (from external sensor)
- Accumulated flow (pulse flow, only terminal 33)
- Not active.

The selected function is active when the digital input is activated (closed contact). See also section 13.1 Digital inputs.

Min.

When the input is activated, the pump will operate according to the min. curve.

Max.

When the input is activated, the pump will operate according to the max. curve.

Ext. fault

When the input is activated, a timer will be started. If the input is activated for more than 5 seconds, an external fault will be indicated. If the input is deactivated, the fault condition will cease and the pump can only be restarted manually by resetting the fault indication

Flow switch

When this function is selected, the pump will be stopped when a connected flow switch detects low flow.

It is only possible to use this function if the pump is connected to a pressure sensor or a level sensor, and the stop function is activated. See sections 10.7.10 and 10.7.11.

Alarm reset

When the input has been activated, the alarm is reset if the cause of the alarm no longer exists.

Dry running

When this function is selected, lack of inlet pressure or water shortage can be detected. This requires the use of an accessory, such as:

- a Grundfos Liqtec[®] dry-running switch
- a pressure switch installed on the suction side of a pump
- a float switch installed on the suction side of a pump.

When lack of inlet pressure or water shortage (Drv running) is detected, the pump will be stopped. The pump cannot restart as long as the input is activated.

Restarts may be delayed by up to 30 minutes, depending on the pump family.

Accumulated flow

When this function is set for digital input 4 and a pulse sensor is connected to terminal 33, the accumulated flow can be measured

10.7.9 Digital flow input (3.12)

This display appears only if a flowmeter has been configured in display 3.11.

The display is used for setting the volume for every pulse for the function Accumulated flow with a pulse sensor connected to terminal 33.

Setting range:

0-265 gal/pulse (0-1000 litre/pulse).

The volume can be set in the unit selected in the start-up guide.

10.7.10 Constant pressure with stop function (3.13)

Settings

The stop function can be set to these values:

- Active
- Not active

The on/off band can be set to these values:

- ∆H is factory-set to 10 % of actual setpoint.
- Δ H can be set within the range from 5 % to 30 % of the actual setpoint.

Operating conditions for the stop function

It is only possible to use the stop function if the system incorporates a pressure sensor, a check valve and a diaphragm tank.

Descriptions

The stop function is used for changing between on/off operation at low flow and continuous operation at high flow.

Fig. 50 Constant pressure with stop function. Difference between start and stop pressures (ΔH)

Low flow can be detected in two different ways:

- 1. A built-in "low-flow detection function" which functions if the digital input is not set up for flow switch.
- 2. A flow switch connected to the digital input.

1. Low-flow detection function

The pump will check the flow regularly by reducing the speed for a short time. If there is no or only a small change in pressure, this means that there is low flow.

The speed will be increased until the stop pressure (actual setpoint + 0.5 x Δ H) is reached and the pump will stop after a few seconds. The pump will restart at the latest when the pressure has fallen to the start pressure (actual setpoint – 0.5 x Δ H). If the flow in the off period is higher than the low-flow limit, the pump will restart before the pressure has fallen to the start pressure.

When restarting, the pump will react in the following way:

- 1. If the flow is higher than the low-flow limit, the pump will return to continuous operation at constant pressure.
- 2. If the flow is lower than the low-flow limit, the pump will continue in start/stop operation. It will continue in start/stop operation until the flow is higher than the low-flow limit. When the flow is higher than the low-flow limit, the pump will return to continuous operation.

2. Low-flow detection with flow switch

When the digital input is activated because there is low-flow, the speed will be increased until the stop pressure (actual setpoint + 0.5 x Δ H) is reached, and the pump will stop. When the pressure has fallen to start pressure, the pump will start again. If there is still no flow, the pump will reach the stop pressure and stop. If there is flow, the pump will continue operating according to the setpoint.

The check valve must always be installed before the pressure sensor. See figs 51 and 52.

If a flow switch is used to detect low flow, the switch must be installed on the system side after the diaphragm tank.

Fig. 51 Position of the check valve and pressure sensor in system with suction lift operation

Fig. 52 Position of the check valve and pressure sensor in system with positive inlet pressure

Diaphragm tank

The stop function requires a diaphragm tank of a certain minimum size. The tank must be installed as close as possible after the pump and the precharge pressure must be 0.7 x actual setpoint. Recommended diaphragm tank size:

Rated flow rate of pump [gpm]	Typical diaphragm tank size [gallons]		
0-26	2		
27-105	4.4		
106-176	14		
177-308	34		
309-440	62		

If a diaphragm tank of the above size is installed in the system, the factory setting of ΔH is the correct setting.

If the tank installed is too small, the pump will start and stop too often. This can be remedied by increasing ΔH .

10.7.11 Constant level with stop function (3.13)

Settings

The stop function can be set to these values:

Active

Not active.

The on/off band can be set to these values:

- ΔH is factory-set to **10 % of actual setpoint**.
- ΔH can be set within the range from 5 % to 30 % of actual setpoint.

A built-in low-flow detection function will automatically measure and store the power consumption at approx. 50 % and 85 % of the rated speed.

- If Active is selected, proceed as follows:
- 1. Close the isolating valve to create a no-flow condition.
- 2. Press OK to start the auto-tuning.

Operating conditions for the stop function

It is only possible to use the constant level stop function if the system incorporates a level sensor, and all valves can be closed.

Description

The stop function is used for changing between on/off operation at low flow and continuous operation at high flow.

Fig. 53 Constant level with stop function. Difference between start and stop levels (ΔH)

Low flow can be detected in two different ways:

- 1. With the built-in low-flow detection function.
- 2. With a flow switch connected to a digital input.

1. Low-flow detection function

The built-in low-flow detection is based on the measurement of speed and power.

When low flow is detected, the pump will stop. When the level has reached the start level, the pump will start again. If there is still no flow, the pump will reach the stop level and stop. If there is flow, the pump will continue operating according to the setpoint.

2. Low-flow detection with flow switch

When the digital input is activated because of low flow, the speed will be increased until the stop level (actual setpoint – 0.5 x Δ H) is reached, and the pump will stop. When the level has reached the start level, the pump will start again. If there is still no flow, the pump will reach the stop level and stop. If there is flow, the pump will continue operating according to the setpoint.

10.7.12 Sensor 1 (3.15)

Setting of sensor 1 connected to terminal 54. This is the feedback sensor.

Select among the following values:

 Sensor output signal: 0-20 mA

4-20 mA.

- Unit of measurement of sensor: bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- · Sensor measuring range.

Setting of sensor 2 connected to an MCB 114 sensor input module.

Select among the following values:

- Sensor output signal: 0-20 mA
 4-20 mA.
- Unit of measurement of sensor: bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Sensor measuring range: 0-100 %.

10.7.14 Duty/standby (3.17)

Settings

The duty/standby function can be set to these values:

Active

Note

• Not active.

Activate the duty/standby function as follows:

- Connect one of the pumps to the mains supply. Set the duty/standby function to *Not active*. Make the necessary settings in menu OPERATION and INSTALLATION.
- 2. Set the operating mode to Stop in menu OPERATION.
- 3. Connect the other pump to the mains supply.
- Make the necessary settings in menu OPERATION and INSTALLATION.

Set the duty/standby function to Active.

The running pump will search for the other pump and automatically set the duty/standby function of this pump to *Active*. If it cannot find the other pump, a fault will be indicated.

The two pumps must be connected electrically via the GENIbus, and nothing else must be connected on the GENIbus.

The duty/standby function applies to two pumps connected in parallel and controlled via GENIbus. Each pump must be connected to its own CUE and sensor.

The primary targets of the function is the following:

- To start the standby pump if the duty pump is stopped due to an alarm.
- · To alternate the pumps at least every 24 hours.
10.7.15 Operating range (3.18)

How to set the operating range:

- Set the min. speed within the range from a pump-dependent min. speed to the adjusted max. speed. The factory setting depends on the pump family.
- Set the max. speed within the range from adjusted min. speed to the pump-dependent maximum speed. The factory setting will be equal to 100 %, i.e. the speed stated on the pump nameplate.

The area between the min. and max. speed is the actual operating range of the pump.

The operating range can be changed by the user within the pump-dependent speed range.

For some pump families, oversynchronous operation (max. speed above 100 %) will be possible. This requires an oversize motor to deliver the shaft power required by the pump during oversynchronous operation.

Fig. 54 Setting of the min. and max. curves in % of maximum performance

10.7.16 Motor bearing monitoring (3.19)

The motor bearing monitoring function can be set to these values:

- Active
- Not active.

When the function is set to *Active*, the CUE will give a warning when the motor bearings are due to be relubricated or replaced.

Description

The motor bearing monitoring function is used to give an indication when it is time to relubricate or replace the motor bearings. See display 2.10 and 2.11.

The warning indication and the estimated time take into account if the pump has been running with reduced speed. Furthermore, the bearing temperature is included in the calculation if temperature sensors are installed and connected to an MCB 114 sensor input module.

The counter will continue counting even if the function is switched to Not active, but a warning will not be given when it is time for relubrication.

10.7.17 Confirming relubrication/replacement of motor bearings (3.20)

This function can be set to these values:

- Relubricated
- Replaced

٠

Nothing done.

When the motor bearings have been relubricated or replaced, confirm this action in the above display by pressing "OK".

Relubricated cannot be selected for a period of time after confirming relubrication.

Relubricated

When the warning *Relubricate motor bearings* has been confirmed,

- the counter is set to 0.
- the number of relubrications is increased by 1.

When the number of relubrications has reached the permissible number, the warning *Replace motor bearings* appears in the display.

Replaced

When the warning Replace motor bearings has been confirmed,

- the counter is set to 0.
- the number of relubrications is set to 0.
- the number of bearing changes is increased by 1.

10.7.18 Temperature sensor 1 (3.21)

This display is only shown if an MCB 114 sensor input module has been installed.

Select the function of a Pt100/Pt1000 temperature sensor 1 connected to an MCB 114:

- D-end bearing
- ND-end bearing
- Other liq. temp. 1
- Other liq. temp. 2
- Motor winding
- Pumped liq. temp.
- Ambient temp.
- Not active.

10.7.19 Temperature sensor 2 (3.22)

This display is only shown if an MCB 114 sensor input module has been installed.

Select the function of a Pt100/Pt1000 temperature sensor 2 connected to an MCB 114:

- D-end bearing
- ND-end bearing
- Other liq. temp. 1
- Other liq. temp. 2
- Motor winding
- Pumped liq. temp.
- Ambient temp.
- Not active.

10.7.20 Standstill heating (3.23)

The standstill heating function can be set to these values:

- Active
- Not active.

When the function is set to *Active* and the pump is stopped by a stop command, a current will be applied to the motor windings. The standstill heating function pre-heats the motor to avoid condensation.

10.7.21 Ramps (3.24)

Up	10.0 s	
Down	10.0 s	

Set the time for each of the two ramps, ramp-up and ramp-down:

- Factory setting:
- Depending on power size.
- The range of the ramp parameter: 1-3600 s.

The ramp-up time is the acceleration time from 0 rpm to the rated motor speed. Choose a ramp-up time such that the output current does not exceed the maximum current limit for the CUE.

The ramp-down time is the deceleration time from rated motor speed to 0 rpm. Choose a ramp-down time such that no overvoltage arises and such that the generated current does not exceed the maximum current limit for the CUE.

Fig. 55 Ramp-up and ramp-down, display 3.24

11. Setting by means of PC Tool E-products

Special setup requirements differing from the settings available via the CUE require the use of Grundfos PC Tool E-products. This again requires the assistance of a Grundfos service technician or engineer. Contact your local Grundfos company for more information.

12. Priority of settings

The On/Off button has the highest priority. In "off" condition, pump operation is not possible.

The CUE can be controlled in various ways at the same time. If two or more operating modes are active at the same time, the operating mode with the highest priority will be in force.

12.1 Control without bus signal, local operating mode

Priority	CUE menu	External signal
1	Stop	
2	Max.	
3		Stop
4		Max.
5	Min.	Min.
6	Normal	Normal

Example: If an external signal has activated the operating mode *Max.*, it will only be possible to stop the pump.

12.2 Control with bus signal, remote-controlled operating mode

Priority	CUE menu	External signal	Bus signal
1	Stop		
2	Max.		
3		Stop	Stop
4			Max.
5			Min.
6			Normal

Example: If the bus signal has activated the operating mode *Max.*, it will only be possible to stop the pump.

13. External control signals

13.1 Digital inputs

The overview shows functions in connection with closed contact.

Terminal	Туре	Function						
18	DI 1	Start/stop of pump						
19	DI 2	 Min. (min. curve) Max. (max. curve) Ext. fault (external fault) Flow switch Alarm reset Dry running (from external sensor) Not active. 						
32	DI 3	 Min. (min. curve) Max. (max. curve) Ext. fault (external fault) Flow switch Alarm reset Dry running (from external sensor) Not active. 						

Terminal	Туре	Function
		• <i>Min.</i> (min. curve)
		• Max. (max. curve)
		 Ext. fault (external fault)
22		Flow switch
33	DI 4	Alarm reset
		 Dry running (from external sensor)
		 Accumulated flow (pulse flow)
		Not active.

The same function must not be selected for more than one input. See fig. 21.

13.2 External setpoint

Terminal	Туре	Function
53	AI 1	• External setpoint (0-10 V)

The setpoint can be remote-set by connecting an analog signal transmitter to the setpoint input (terminal 53).

Open loop

In control mode *Open loop* (constant curve), the actual setpoint can be set externally within the range from the min. curve to the setpoint set via the CUE menu. See fig. 56.

Fig. 56 Relation between the actual setpoint and the external setpoint signal in control mode Open loop

Closed loop

In all other control modes, except proportional differential pressure, the actual setpoint can be set externally within the range from the lower value of the sensor measuring range (sensor min.) to the setpoint set via the CUE menu. See fig. 57.

Fig. 57 Relation between the actual setpoint and the external setpoint signal in control mode Controlled

Example: At a sensor min. value of 0 bar, a setpoint set via the CUE menu of 3 bar and an external setpoint of 80 %, the actual setpoint will be as follows:

Actual setpoint = (setpoint set via the CUE menu – sensor min.) x % external setpoint signal + sensor min.

> = (3 – 0) x 80 % + 0 = 2.4 bar.

Proportional differential pressure

In control mode *Proportional differential pressure,* the actual setpoint can be set externally within the range from 25 % of maximum head to the setpoint set via the CUE menu. See fig. 58.

Fig. 58 Relation between the actual setpoint and the external setpoint signal in control mode Proportional differential pressure

Example: At a maximum head of 12 metres, a setpoint of 6 metres set via the CUE menu and an external setpoint of 40 %, the actual setpoint will be as follows:

(setpoint, CUE menu – 25 % of maximum Actual setpoint = head) x % external setpoint signal + 25 % of maximum head

13.3 GENIbus signal

The CUE supports serial communication via an RS-485 input. The communication is carried out according to the Grundfos GENIbus protocol and enables connection to a building management system or another external control system.

Operating parameters, such as setpoint and operating mode can be remote-set via the bus signal. At the same time, the pump can provide status information about important parameters, such as actual value of control parameter, input power and fault indications.

Contact Grundfos for further details.

If a bus signal is used, the number of settings available via the CUE will be reduced.

13.4 Other bus standards

Grundfos offers various bus solutions with communication according to other standards.

Contact Grundfos for further details.

14. Maintenance and service

14.1 Cleaning the CUE

Keep the cooling fins and fan blades clean to ensure sufficient cooling of the CUE.

14.2 Service parts and service kits

For further information on service parts and service kits, visit www.grundfos.com > International website > WebCAPS.

15.1 Warning and alarm list

		S	Statu	S		
Code and display text		Warning	Alarm	Locked alarm	Operat- ing mode	Reset- ting
1	Too high leakage current			•	Stop	Man.
2	Mains phase failure		•		Stop	Aut.
3	External fault		•		Stop	Man.
16	Other fault		•		Stop	Aut.
20	Poplace motor bearings	•		•	Stop	Man.
30	Replace motor bearings	-			-	
32	Overvoltage	•	•		- Stop	Aut
		•	•			Aut
40	Undervoltage	-	•		Stop	Aut.
			•		Stop	Aut.
48	Overload			•	Stop	Man.
49	Overload		•		Stop	Aut.
	A A A	٠			_	Aut.
55	Overload		٠		Stop	Aut.
57	Dry running		•		Stop	Aut.
64	Too high CUE temperature		•		Stop	Aut.
70	Too high motor temperature		•		Stop	Aut.
77	Communication fault, duty/standby	•			-	Aut.
89	Sensor 1 outside range		•		1)	Aut.
91	Temperature sensor 1 outside range	•			-	Aut.
93	Sensor 2 outside range	٠			-	Aut.
96	Setpoint signal outside range		•		1)	Aut.
110	Too high bearing	٠			-	Aut.
140	temperature		•		Stop	Aut.
149	Too high bearing	•	•		- Stop	Aut.
155	Inrush fault		•		Stop	Aut.
175	Temperature sensor 2 outside range	•			-	Aut.
240	Relubricate motor bearings	•			-	Man. ³⁾
241	Motor phase failure	٠			-	Aut.
			٠		Stop	Aut.
242	AMA ² did not succeed	•			-	Man.

¹⁾ In case of an alarm, the CUE will change the operating mode depending on the pump type.

²⁾ AMA, Automatic Motor Adaptation. Not active in the present software.

³⁾ Warning is reset in display 3.20.

15.2 Resetting of alarms

In case of fault or malfunction of the CUE, check the alarm list in menu OPERATION. The latest five alarms and latest five warnings can be found in the log menus.

Contact a Grundfos technician if an alarm occurs repeatedly.

15.2.1 Warning

The CUE will continue the operation as long as the warning is active. The warning remains active until the cause no longer exists. Some warnings may switch to alarm condition.

15.2.2 Alarm

In case of an alarm, the CUE will stop the pump or change the operating mode depending on the alarm type and pump type. See section *15.1 Warning and alarm list*.

Pump operation will be resumed when the cause of the alarm has been remedied and the alarm has been reset.

Resetting an alarm manually

- Press OK in the alarm display.
- · Press On/Off twice.
- Activate a digital input DI 2-DI 4 set to *Alarm reset* or the digital input DI 1 (*Start/stop*).

If it is not possible to reset an alarm, the reason may be that the fault has not been remedied, or that the alarm has been locked.

15.2.3 Locked alarm

In case of a locked alarm, the CUE will stop the pump and become locked. Pump operation cannot be resumed until the cause of the locked alarm has been remedied and the alarm has been reset.

Resetting a locked alarm

Switch off the power supply to the CUE for approx.
 30 seconds. Switch on the power supply, and press OK in the alarm display to reset the alarm.

15.3 Indicator lights

The table show the function of the indicator lights.

Indicator light	Function
	The pump is running or has been stopped by a stop function.
On (green)	If flashing, the pump has been stopped by the user (CUE menu), external start/stop or bus.
Off (orange)	The pump has been stopped with the On/Off button.
Alarm (red)	Indicates an alarm or a warning.

15.4 Signal relays

The table show the function of the signal relays.

Туре	Function							
	• Ready	Pump running						
Relay 1	• Alarm	Warning						
	Operation	Relubricate.						
	Ready	Pump running						
Relay 2	• Alarm	Warning						
	 Operation 	Relubricate.						

See also fig. 30.

16. Technical data

16.1 Enclosure

The individual CUE cabinet sizes are characterised by their enclosures. The table shows the relationship of enclosure class and enclosure type.

Example:

Read from the nameplate:

- Supply voltage = 3 x 380-500 V.
- Typical shaft power = 1.5 kW.
- Enclosure class = IP20.

The table shows that the CUE enclosure is A2.

Туріса	al shaft	Enclosure class and type										
powe	er P2	1	x 200-240	V	3 x 20	0-240 V	3 x 38	0-500 V	3 x 52	5-600 V	3 x 52	5-690 V
[kW]	[HP]	IP20 NEMA0	IP21 NEMA1	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP21 NEMA1	IP55 NEMA12
0.55	0.75											
0.75	1											
1.1	1.5	A3		A5	۸2		٨2	۸.5				
1.5	2				72	۸.5	72	AJ	A3	A5		
2.2	3		P1	P1		A3						
3	4		ы	ы	٨٥							
3.7	5				AS							
4	5						A2					
5.5	7.5		B1	B1			12	A5	A3	A5		
7.5	10		B2	B2	B3	B1	AS					
11	15											
15	20				R4	B2	B3	B1				
18.5	25				D4						B2	B2
22	30				<u></u>	C1		DO				
30	40				03		B4	DZ				
37	50				C4	C2						
45	60				04	02	<u></u>	C1				
55	75						03				C2	C2
75	100						C1	C2				
90	125						04	02				

US

TM03 9002 2807

Fig. 59 Enclosures A2 and A3

Fig. 60 Enclosures A5, B1, B2, B3, B4, C1, C2, C3 and C4

Enclosure	Height [in] 1)		Width [in] ¹⁾		Depth [in] 1)		Screw holes [in]				Woight [lb]
Enclosure	Α	а	В	b	С	C 2)	с	Ød	Øe	f	weight [ib]
A2	10.6	10.1	3.5	2.8	8.1	8.6	0.31	0.43	0.22	0.35	10.8
with IP21/NEMA1 option	14.8	13.8	3.5	2.8	8.1	8.6	0.31	0.43	0.22	0.35	11.7
A3	10.6	10.1	5.1	4.3	8.1	8.6	0.31	0.43	0.22	0.35	14.6
with IP21/NEMA1 option	14.8	13.8	5.1	4.3	8.1	8.6	0.31	0.43	0.22	0.35	15.4
A5	16.5	15.8	9.5	8.5	7.9	7.9	0.32	0.47	0.26	0.35	30.9
B1	18.9	17.9	9.5	8.3	10.2	10.2	0.47	0.75	0.35	0.35	50.7
B2	25.6	24.6	9.5	8.3	10.2	10.2	0.47	0.75	0.35	0.35	59.5
B3	15.7	15.0	6.5	5.5	9.8	10.3	0.31	0.47	0.27	0.31	26.5
with IP21/NEMA1 option	18.7	-	6.5	-	9.8	10.3	0.31	0.47	0.27	0.31	-
B4	20.5	19.5	9.1	7.9	9.5	9.5	-	-	0.33	0.59	51.8
with IP21/NEMA1 option	26.4	-	10.0	-	9.7	9.7	-	-	0.33	0.59	-
C1	26.8	25.5	12.1	10.7	12.2	12.2	0.47	0.75	0.35	0.39	99.2
C2	30.3	29.1	14.6	13.1	13.2	13.2	0.47	0.75	0.35	0.39	143
C3	21.7	20.5	12.1	10.6	13.1	13.1	-	-	0.33	0.67	77.2
with IP21/NEMA1 option	29.7	-	13.0	-	13.3	13.3	-	-	0.33	0.67	-
C4	26.0	24.8	14.6	13.0	13.1	13.1	-	-	0.33	0.67	110
with IP21/NEMA1 option	37.4	-	15.4	-	13.3	13.3	-	-	0.33	0.67	-

TM03 9000 2807

¹⁾ The dimensions are maximum height, width and depth. Dimensions are without options.

16.3 Surroundings

Relative humidity	5-95 % RH
Ambient temperature	Max. 122 °F
Average ambient temperature over 24 hours	Max. 113 °F
Minimum ambient temperature at full operation	32 °F
Minimum ambient temperature at reduced operation	14 °F
Temperature during storage and transportation	–13 to 149 °F
Storage duration	Max. 6 months
Maximum altitude above sea level without performance reduction	3280 ft
Maximum altitude above sea level with performance reduction	9840 ft

16.4 Terminal tightening torques

Enclosure	Tightening torque [lb-ft]					
type	Mains	Motor	Ground	Relay		
A2	1.3	1.3	2.2	0.4		
A3	1.3	1.3	2.2	0.4		
A5	1.3	1.3	2.2	0.4		
B1	1.3	1.3	2.2	0.4		
B2	3.3	3.3	2.2	0.4		
B3	1.3	1.3	2.2	0.4		
B4	3.3	3.3	2.2	0.4		
C1	7.4	7.4	2.2	0.4		
C2	10.3 ¹⁾ / 17.7 ²⁾	10.3 ¹⁾ / 17.7 ²⁾	2.2	0.4		
C3	7.4	7.4	2.2	0.4		
C4	10.3 ¹⁾ / 17.7 ²⁾	10.3 ¹⁾ / 17.7 ²⁾	2.2	0.4		

Note

The CUE comes in a packaging which is not suitable for outdoor storage.

 $^{1)}$ Conductor gauge size \leq 4/0 AWG. $^{2)}$ Conductor gauge size \geq 4/0 AWG.

16.5 Cable length

Maximum length, screened motor cable	500 ft
Maximum length, unscreened motor cable	1000 ft
Maximum length, signal cable	1000 ft

16.6 Fuses and cable gauge size

Warning

Always comply with national and local regulations as to cable gauge sizes.

16.6.1 Cable gauge size to signal terminals

Maximum cable gauge size to signal terminals, rigid conductor	14 AWG
Maximum cable gauge size to signal terminals, flexible conductor	18 AWG
Minimum cable gauge size to signal terminals	20 AWG

16.6.2 Non-UL fuses and conductor cross-section (gauge size) to mains and motor

Typical shaft power P2	Maximum fuse size	Fuse type	Maximum conductor cross-section ¹⁾
[kW]	[A]		[mm ²]
1 x 200-240 V			
1.1	20	gG	4
1.5	30	gG	10
2.2	40	gG	10
3	40	gG	10
3.7	60	gG	10
5.5	80	gG	10
7.5	100	gG	35
3 x 200-240 V			
0.75	10	gG	4
1.1	20	gG	4
1.5	20	gG	4
2.2	20	gG	4
3	32	gG	4
3.7	32	gG	4
5.5	63	gG	10
7.5	63	gG	10
11	63	gG	10
15	80	gG	35
18.5	125	gG	50
22	125	gG	50
30	160	gG	50
37	200	aR	95
45	250	aR	120
3 x 380-500 V			
0.55	10	gG	4
0.75	10	gG	4
1.1	10	gG	4
1.5	10	gG	4
2.2	20	gG	4
3	20	gG	4
4	20	gG	4
5.5	32	gG	4
7.5	32	gG	4
11	63	gG	10
15	63	gG	10

Typical shaft power P2	Maximum fuse size	Fuse type	Maximum conductor cross-section ¹⁾
[kW]	[A]		[mm ²]
18.5	63	gG	10
22	63	gG	35
30	80	gG	35
37	100	gG	50
45	125	gG	50
55	160	gG	50
75	250	aR	95
90	250	aR	120
3 x 525-600 V			
0.75	10	gG	4
1.1	10	gG	4
1.5	10	gG	4
2.2	20	gG	4
3	20	gG	4
4	20	gG	4
5.5	32	gG	4
7.5	32	gG	4
3 x 525-690 V			
11	63	gG	35
15	63	gG	35
18.5	63	gG	35
22	63	gG	35
30	63	gG	35
37	80	gG	95
45	100	gG	95
55	125	gG	95
75	160	gG	95
90	160	gG	95

 Screened motor cable, unscreened supply cable. AWG, see section 16.6.3.

Typical shaft				Fuse ty	be			Maximum conductor
power P2	Bussmann	Bussmann	Bussmann	SIBA	Littel Fuse	Ferraz-Shawmut	Ferraz-Shawmut	cross-section 1)
[kW]	RK1	J	т	RK1	RK1	CC	RK1	[AWG] ²⁾
1 x 200-240 V								
1.1	KTN-R20	-	-	-	_	-	_	10
1.5	KTN-R30	-	-	-	-	-	_	7
2.2	KTN-R40	_	_	_	_	_	_	7
3	KTN-R40	_	-	-	_	_	_	7
37	KTN-R60	-	-	-	-	-	-	7
5.5	_	_	_	-	_	_	_	7
7.5	_	_	_	_	_	_	_	2
2 x 200 240 V	_					_	_	2
0.75		IKS 10	LIN 10	5017006 010			10P	10
0.75		JKS-10	JJN-10	5017900-010			A2K-TOK	10
1.1	KTN R20	JKS-20	JJN-20	5017900-020	KTN-R20		A2K-20K	10
1.0	KTN R20	JKS-20	JJN-20	5017906-020			AZK-ZUK	10
2.2	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	AZK-ZUK	10
3	KTN D20	JKS-30	JJN-30	5012406-032		ATM-R30	AZK-SUK	10
3.7	KTN-R30	JKS-30	JJN-30	5012406-032	KIN-R30	ATM-R30	AZK-30R	10
5.5	KIN-R50	JKS-50	JJN-50	5012406-050	KLN-R50	-	A2K-50R	
7.5	KIN-R50	JKS-60	JJN-60	5012406-050	KLN-R60	-	A2K-50R	7
11	KTN-R60	JKS-60	JJN-60	5014006-063	KLN-R60	A2K-60R	A2K-60R	7
15	KTN-R80	JKS-80	JJN-80	5014006-080	KLN-R80	A2K-80R	A2K-80R	2
18.5	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
22	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
30	FWX-150	-	-	2028220-150	L25S-150	A25X-150	A25X-150	1/0
37	FWX-200	-	—	2028220-200	L25S-200	A25X-200	A25X-200	4/0
45	FWX-250	-	-	2028220-250	L25S-250	A25X-250	A25X-250	250 MCM
3 x 380-500 V								
0.55	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
0.75	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.1	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.5	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
2.2	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5.5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7.5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
11	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	_	A6K-40R	7
15	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	_	A6K-40R	7
18.5	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	_	A6K-50R	7
22	KTS-R60	JKS-60	JJS-60	5014006-063	KLS-R60	-	A6K-60R	2
30	KTS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	-	A6K-80R	2
37	KTS-R100	JKS-100	JJS-100	2028220-125	KI S-R100	-	A6K-100R	1/0
45	KTS-R125	JKS-150	.US-150	2028220-125	KLS-R125	_	A6K-125R	1/0
55	KTS-R150	JKS-150	.US-150	2028220-160	KLS-R150	_	A6K-150R	1/0
75	FWH-220			2028220-200	1.508-225	_	450-P225	4/0
90	FWH-250	_		2020220 200	1508-250	_	A50-P250	250 MCM
3 x 525-600 V	1 111 200			2020220 200	2000 200		7601200	200 100101
0.75	KTS-R10	IKS-10	115-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
11	KTS-P10	JKS-10		5017906-010	KTN-P10	ATM-R10	A2K-10P	10
15	KTS-R10	IKS-10	LIS-10	5017906-010	KTN-R10		A2K-10R	10
2.2	KTS P20	JKS 20	119 20	5017906-020			A2K-10K	10
2.2	KTS-R20	JKS-20	JJ3-20	5017900-020	KTN-R20		A2K-20K	10
	KTS-R20	JKS-20	JJ3-20	5017900-020	KTN-R20		A2K-20K	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	AZK-ZUR	10
5.5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7.5	KTS-R30	JKS-30	JJS-30	5012406-032	KIN-R30	ATM-R30	A2K-30R	10
3 X 525-690 V		11/0 05	110.05	5017000.005	1/1 00005	LIOTOS	1.01/ 05P	4/0
11	KIS-R-25	JKS-25	JJS-25	5017906-025	KLSKU25	H5125	Abk-25K	1/0
15	KIS-R-30	JKS-30	JJS-30	501/906-030	KLSR030	HS130	A6K-30K	1/0
18.5	KIS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
22	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
30	KTS-R-60	JKS-60	JJS-60	5014006-063	KLSR060	HST60	A6K-60R	1/0
37	KTS-R-80	JKS-80	JJS-80	5014006-080	KLSR075	HST80	A6K-80R	1/0
45	KTS-R-90	JKS-90	JJS-90	5014006-100	KLSR090	HST90	A6K-90R	1/0
55	KTS-R-100	JKS-100	JJS-100	5014006-100	KLSR100	HST100	A6K-100R	1/0
75	KTS-R125	JKS-125	JJS-125	2028220-125	KLS-125	HST125	A6K-125R	1/0
90	KTS-R150	JKS-150	JJS-150	2028220-150	KLS-150	HST150	A6K-150R	1/0

16.6.3 UL fuses and conductor cross-section (gauge size) to mains and motor

Screened motor cable, unscreened supply cable.
 American Wire Gauge.

16.7 Inputs and outputs

16.7.1 Mains supply (L1, L2, L3)

Supply voltage	200-240 V ± 10 %
Supply voltage	380-500 V ± 10 %
Supply voltage	525-600 V ± 10 %
Supply voltage	525-690 V ± 10 %
Supply frequency	50/60 Hz
Maximum temporary imbalance between phases	3 % of rated value
Leakage current to ground	> 3.5 mA
Number of cut-ins, enclosure A	Max. 2 times/min.
Number of cut-ins, enclosures B and C	Max. 1 time/min.

Note Do not use the power supply for switching the CUE on and off.

16.7.2 Motor output (U, V, W)

Output voltage	0-100 % ¹⁾
Output frequency	0-100 Hz ²⁾
Switching on output	Not recommended

¹⁾ Output voltage in % of supply voltage.

²⁾ Depending on the pump family selected.

16.7.3 RS-485 GENIbus connection

Terminal number	68 (A), 69 (B), 61 GND (Y)

The RS-485 circuit is functionally separated from other central circuits and galvanically separated from the supply voltage (PELV).

16.7.4 Digital inputs

Terminal number	18, 19, 32, 33
Voltage level	0-24 VDC
Voltage level, open contact	> 19 VDC
Voltage level, closed contact	< 14 VDC
Maximum voltage on input	28 VDC
Input resistance, R _i	Approx. 4 kΩ

All digital inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

16.7.5 Signal relays

Relay 01, terminal number	1 (C), 2 (NO), 3 (NC)
Relay 02, terminal number	4 (C), 5 (NO), 6 (NC)
Maximum terminal load (AC-1) ¹⁾	240 VAC, 2 A
Maximum terminal load (AC-15) ¹⁾	240 VAC, 0.2 A
Maximum terminal load (DC-1) ¹⁾	50 VDC, 1 A
Minimum terminal load	24 V DC 10 mA 24 V AC 20 mA

¹⁾ IEC 60947, parts 4 and 5.

C = Common

- NO = Normally open
- NC = Normally closed

The relay contacts are galvanically separated from other circuits by reinforced insulation (PELV).

16.7.6 Analog inputs

Analog input 1, terminal number	53
Voltage signal	A53 = "U" ¹⁾
Voltage range	0-10 V
Input resistance, R _i	Approx. 10 k Ω
Maximum voltage	± 20 V
Current signal	A53 = "I" ¹⁾
Current range	0-20, 4-20 mA
Input resistance, R _i	Approx. 200 Ω
Maximum current	30 mA
Maximum fault, terminals 53, 54	0.5 % of full scale
Analog input 2, terminal number	54
Current signal	A54 = "I" ¹⁾
Current range	0-20, 4-20 mA
Input resistance, R _i	Approx. 200 Ω
Maximum current	30 mA
Maximum fault, terminals 53, 54	0.5 % of full scale

¹⁾ The factory setting is voltage signal "U".

All analog inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

16.7.7 Analog output

Analog output 1, terminal number	42
Current range	0-20 mA
Maximum load to ground	500 Ω
Maximum fault	0.8 % of full scale

The analog output is galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

16.7.8 MCB 114 sensor input module

Analog input 3, terminal number	2
Current range	0/4-20 mA
Input resistance	< 200 Ω
Analog inputs 4 and 5, terminal number	4, 5 and 7, 8
Signal type, 2- or 3-wire	Pt100/Pt1000

Note

 \Box When using Pt100 with 3-wire cable, the resistance must not exceed 30 Ω .

16.8 Sound pressure level

The sound pressure of the CUE is maximum 70 dB(A).

The sound pressure level of a motor controlled by a variable frequency drive may be higher than that of a corresponding motor which is not controlled by a variable frequency drive. See section *6.7 RFI filters*.

17. Disposal

This product or parts of it must be disposed of in an environmentally sound way:

- 1. Use the public or private waste collection service.
- 2. If this is not possible, contact the nearest Grundfos company or service workshop.

GARANTIE LIMITÉE

Les produits fabriqués par GRUNDFOS PUMPS CORPORATION (Grundfos) sont couverts par une garantie à l'utilisateur initial à l'effet qu'ils sont exempts de vices attribuables aux matériaux et à la fabrication pour une période de 24 mois après la date d'installation, mais sans excéder une période de 30 mois après la date de fabrication. Selon les termes de cette garantie, la responsabilité de Grundfos se limitera à réparer ou à remplacer sans frais, à la discrétion de Grundfos et FAB de l'usine de Grundfos ne sera pas responsable des frais d'enlèvement, d'installation, de transport, ou de tous les autres frais pouvant être encourus dans le cadre d'une demande d'indemnité concernant la garantie. Les produits vendus, mais qui ne sont pas fabriqués par Grundfos, sont couverts par la garantie de Grundfos. Grundfos ne sera pas responsable de la détérioration des produits ou des produits endommagés dans les cas suivants : conditions d'utilisation anormales, accidents, abus, mauvais usage, modification ou réparation non autorisée, ou lorsque le produit n'a pas été installé conformément aux instructions écrites de Grundfos concernant l'installation et l'exploitation.

Pour obtenir un service selon les termes de cette garantie, vous devez retourner le produit défectueux au distributeur ou au fournisseur de produits Grundfos qui vous a vendu le produit, incluant la preuve d'achat et la date d'installation, la date de la défaillance, et les informations concernant l'installation. Sauf disposition contraire, le distributeur ou le fournisseur contactera Grundfos ou un poste de service autorisé pour obtenir les instructions. Tout produit défectueux doit être retourné "fret payé à l'avance" à Grundfos ou à un poste de service. Les documents décrivant la demande d'indemnité aux termes de la garantie et/ou une autorisation de retour de marchandise doivent être inclus si exigé.

GRUNDFOS NE SERA PAS RESPONSABLE DES DOMMAGES INDIRECTS OU CONSÉ-CUTIFS, DES PERTES, OU DES FRAIS DÉCOULANT DE L'INSTALLATION, L'UTILISA-TION, OU DE TOUTE AUTRE CAUSE. IL N'EXISTE AUCUNE GARANTIE EXPRESSE OU IMPLICITE, INCLUANT LA QUALITÉ MARCHANDE OU L'ADAPTATION À UNE FIN PARTI-CULIÈRE, QUI OUTREPASSE LES GARANTIES DÉCRITES OU RÉFÉRENCÉES CI-DES-SUS.

Certaines juridictions ne permettent pas l'exclusion ou la limitation des dommages indirects ou consécutifs, et certaines juridictions ne permettent pas de limiter la durée des garanties implicites. Il est donc possible que les limitations ou que les exclusions mentionnées précédemment ne s'appliquent pas à vous. Cette garantie vous accorde des droits légaux spécifiques, et vous pouvez également avoir d'autres droits qui varient d'une juridiction à l'autre.

SOMMAIRE

		Page
1.	Symboles utilisés dans cette notice	48
2.	Introduction	48
2.1	Description générale	48
2.2	Applications	48
2.3	Références	49
3.	Sécurité et avertissements	49
3.1	Avertissement	49
3.2	Consignes de sécurité	49
3.3	Conditions requises pour le montage	49
3.4		49
4 .	Identification	50
4.1	Flaque Signalelique	50
7.2 5		50
5.1	Réception et stockage	50
5.2	Transport et déballage	50
5.3	Dégagement requis et circulation d'air	50
5.4	Montage	51
6.	Branchement électrique	51
6.1	Protection électrique	51
6.2	Branchements secteur et moteur	52
6.3	Branchements des bornes de signaux	56
6.4 6.5	Branchement des relais de signaux	58
6.6	Installation de CEM correcte	59 60
6.7	Filtres RFI	60
6.8	Filtres de sortie	61
7.	Modes de fonctionnement	61
8.	Modes de régulation	61
8.1	Fonctionnement non régulé (boucle ouverte)	61
8.2	Opération régulée (boucle fermée)	62
9.	Vue d'ensemble des menus	63
10.	Réglages sur panneau de commande	66
10.1	Panneau de commande	66
10.2	Retour au réglage d'usine	66
10.3	Guide de mise en service	6/ 71
10.4		71
10.6	Menu ÉTAT	72
10.7	Menu INSTALLATION	74
11.	Réglage avec PC Tool E-products	81
12.	Priorité des réglages	82
12.1	Régulation sans signal bus, mode de fonctionnement	t
	local	82
12.2	Régulation avec signal bus, mode de fonctionnement	t
	régulé à distance	82
13.	Signaux de régulation externes	82
13.1	Entrées numériques	82
13.2	Point consigne externe	82
13.3	Autres standard Bus	03 83
14	Maintenance et révision	83
14.1	Nettovage du CUE	83
14.2	Kits de maintenance et pièces de rechange	83
15.	Recherche des défauts	84
15.1	Liste des avertissements et des alarmes	84
15.2	Mise à zéro des alarmes	84
15.3	Voyants indicateurs	85
15.4	Relais signaux	85

16.	Données techniques			
16.1	Boîtier	86		
16.2	Dimensions principales et poids	87		
16.3	Environnement	88		
16.4	Couples de serrage des bornes	88		
16.5	Longueur de câble	88		
16.6	Fusibles et section câble	88		
16.7	Entrées et sorties	91		
16.8	Niveau de pression sonore	91		
17.	Mise au rebut	92		

Avertissement

Avant d'entamer les opérations d'installation, étudier avec attention la présente notice d'installation et d'entretien. L'installation et le fonctionnement doivent être conformes aux réglementations locales et faire l'objet d'une bonne utilisation.

1. Symboles utilisés dans cette notice

Avertissement

Si ces instructions de sécurité ne sont pas observées, il peut en résulter des dommages corporels!

Précautions

cela peut entraîner un dysfonctionnement ou des dégâts sur le matériel!

Si ces instructions ne sont pas respectées,

Ces instructions rendent le travail plus facile et assurent un fonctionnement fiable.

2. Introduction

Manuel d'introduction complet pour le convertisseur de fréquence CUE Grundfos, pour une plage de courant de sortie de 1,8 à 177 A.

Ce manuel doit être rangé près du CUE.

2.1 Description générale

Le CUE comprend une série de convertisseurs de fréquence externes spécialement conçus pour les pompes.

Grâce au guide de mise en service CUE, l'installateur peut rapidement régler les paramètres centraux et mettre en fonction le CUE.

Branché à un capteur ou un signal de commande externe, le CUE permet d'adapter rapidement la vitesse de la pompe à la demande actuelle.

2.2 Applications

La série CUE et les pompes standard Grundfos complètent la gamme des pompes E Grundfos avec convertisseur de fréquence intégré.

La solution CUE offre la même fonctionnalité que les pompes E

- pour les plages de tension secteur ou de puissance non couvertes par la gamme de la pompe E.
- pour les applications où un convertisseur de fréquence n'est pas souhaitable ou admissible.

2.3 Références

Documentation technique pour le CUE Grundfos.

- Le manuel comprend toutes les informations nécessaires à la mise en fonction du CUE.
- La brochure d'informations comprend toutes les informations techniques concernant la construction et les applications de l'unité CUE.
- Les instructions de service comprennent toutes les informations pour démonter et réparer le convertisseur de fréquence.

Documentation technique disponible sur www.grundfos.com > Site Internet International > WebCAPS.

Pour toute question supplémentaire, veuillez contacter le service agréé Grundfos le plus proche.

3. Sécurité et avertissements

3.1 Avertissement

Avertissement

L'installation, la maintenance et l'inspection doivent être effectuées par du personnel formé.

Avertissement

Le contact avec des pièces électriques peut être fatal, même après la mise hors tension du CUE. Avant d'effectuer un travail sur le CUE, l'alimentation secteur et les autres entrées de tension doivent être débranchées pendant au moins le délai indiqué ci-dessous.

Tension	Délai d'attente min.		
	4 minutes	15 minutes	20 minutes
200-240 V	0,75 à 3,7 kW (1 à 5 CV)	5,5 à 45 kW (7,5 à 60 CV)	
380-500 V	0,55 à 7,5 kW (0,75 à 10 CV)	11 à 90 kW (15 à 125 CV)	
525-600 V	0,75 à 7,5 kW (1 à 10 CV)		
525-690 V			11 à 90 kW (15 à 125 CV)

Délai d'attente plus court seulement si indiqué sur la plaque signalétique du CUE concerné.

3.2 Consignes de sécurité

- Le bouton marche/arrêt du panneau de commande n'interrompt pas l'alimentation secteur du CUE. Il ne doit donc pas être utilisé comme interrupteur de sécurité.
- Le CUE doit avoir une mise à la terre correcte et être protégé contre le contact indirect, conformément aux réglementations nationales.
- Le courant de fuite à la terre est supérieur à 3,5 mA.
- La classe de boîtier NEMA 1 ne doit pas être librement accessible. Elle doit être installée uniquement dans un panneau.
- La classe de boîtier NEMA 12 ne doit pas être installée sans protection supplémentaire contre l'eau et le soleil.
- Toujours se conformer à la réglementation locale et nationale en matière de section de câble, de protection contre les courtcircuits et la protection contre la surintensité.

3.3 Conditions requises pour le montage

En matière de sécurité générale, prendre en considération les éléments suivants :

- Fusibles et interrupteurs de protection contre la surintensité et les court-circuits
- Sélection des câbles (courant secteur, moteur, répartition de charge et relais)
- Configuration du réseau (IT, TN, mise à terre)
- Sécurité de branchement entrées et sorties (PELV).

3.3.1 Secteur IT

Avertissement

Ne pas brancher des convertisseurs de fréquence CUE 380-500 V sur une alimentation secteur avec une tension supérieure à 440 V entre la phase et la mise à terre.

Pour ce qui est des réseaux IT et en delta avec mise à terre, la tension secteur ne doit pas dépasser 440 V entre la phase et la terre.

3.3.2 Environnement agressif

Le CUE ne doit pas être installé dans un environnement dont l'air contient des liquides, des particules ou des gaz pouvant affecter ou endommager les composants électroniques.

Le CUE contient un grand nombre de composants mécaniques et électroniques. Ils sont tous sensibles aux effets environnementaux.

3.4 Rendement réduit dans certaines conditions

Dans certaines conditions, le rendement est réduit :

- Faible pression d'air (à haute altitude)
- Longueur câbles moteur.

Les mesures requises sont décrites dans les deux paragr. suivants.

3.4.1 Réduction à basse pression d'air

Avertissement

À une altitude supérieure à 2000 m (6600 pieds), le PELV ne peut être respecté.

PELV = Protective Extra Low Voltage (très basse tension de protection).

À basse pression d'air, la capacité de refroidissement est réduite et le CUE réduit automatiquement son rendement pour éviter une surcharge.

Il est nécessaire de choisir un CUE à rendement plus élevé.

3.4.2 Réduction en raison de la longueur des câbles moteur

La longueur maximale des câbles du CUE est de 300 m (1000 pieds) pour les câbles non blindés et 150 m (500 pieds) pour les câbles blindés. En cas de câbles plus longs, veuillez contacter Grundfos.

Le CUE est conçu pour un câble moteur avec section maximale indiquée au paragr. 16.6 Fusibles et section câble.

4. Identification

4.1 Plaque signalétique

Le CUE est identifié par une plaque signalétique. Exemple :

Fig. 1 Exemple de plaque signalétique

Texte	Description	
T/C:	CUE (nom du produit) 202P1M2 (code interne)	
Prod. no:	Numéro du produit : 12345678	
S/N:	Numéro de série : 123456G234 Les trois derniers chiffres indiquent la date de pro- duction : 23 indique la semaine et 4 l'année 2004.	
1,5 kW	Puissance à l'arbre typique sur le moteur	
IN:	Tension d'alimentation, fréquence et courant d'entrée maximal	
OUT:	Tension moteur, fréquence et courant de sortie maximal. La fréquence de sortie maximale dépend du type de pompe.	
CHASSIS/ IP20	Classe de boîtier	
Tamb.	Température ambiante maximale	

4.2 Étiquette d'emballage

Le CUE peut aussi être identifié par l'étiquette figurant sur l'emballage.

5. Installation mécanique

Chaque armoire CUE se distingue par son boîtier. Le tableau du paragr. *16.1* indique la relation entre la classe et le type de boîtier.

5.1 Réception et stockage

À la réception, vérifier si l'emballage est intact et si l'unité est complète. En cas de dommages durant le transport, adresser une réclamation au transporteur.

Le CUE est livré dans un emballage inadapté pour le stockage en extérieur.

5.2 Transport et déballage

Ne déballer le CUE que sur le site d'installation pour à éviter tout dommage pendant le transport.

En plus de l'unité elle-même, l'emballage contient un ou plusieurs sachets d'accessoires ainsi que de la documentation. Voir fig. 2.

Fig. 2 Emballage du CUE

5.3 Dégagement requis et circulation d'air

Les unités CUE peuvent être montées côte à côte. Il est toutefois nécessaire de prévoir une circulation d'air suffisante pour le refroidissement. De plus, les conditions suivantes doivent être respectées.

- Dégagement suffisant au-dessus et au-dessous du CUE. Voir tableau ci-dessous.
- Température ambiante jusqu'à 50 °C (122 °F).
- Fixer le CUE directement au mur ou bien avec une plaque arrière. Voir fig. 3.

Fig. 3 CUE posé directement sur mur ou fixé avec une plaque arrière

Dégagement au-dessus et au-dessous du CUE

Boîtier	Dégagement [mm / pouces]
A2, A3, A5	100 / 3,9
B1, B2, B3, B4, C1, C3	200 / 7,9
C2, C4	225 / 8,9

Pour des informations sur le boîtier, voir tableau du paragr. 16.1.

5.4 Montage

Précautions L'utilisateur est responsable du montage sécurisé du CUE sur une surface solide.

- 1. Marquer et percer les orifices. Voir les dimensions au paragr. *16.2.*
- 2. Fixer les vis sans les serrer. Fixer le CUE et serrer les 4 vis.

Fig. 4 Perçage des orifices

6. Branchement électrique

Avertissement

Le propriétaire ou l'installateur est responsable d'assurer une mise à terre et une protection correctes et conformes aux normes locales et nationales.

Avertissement

Avant d'effectuer un travail sur le CUE, l'alimentation secteur et les autres entrées de tension doivent être débranchées pendant au moins le délai indiqué au paragr. 3. Sécurité et avertissements.

Fig. 5 Exemple de branchement triphasé du CUE avec interrupteur secteur, fusibles de sauvegarde et protection supplémentaire

6.1 Protection électrique

6.1.1 Protection contre les chocs électriques, contact indirect

Avertissement

Précautions

Le CUE doit avoir une mise à terre correcte et être protégé contre le contact indirect, conformément aux réglementations nationales.

La courant de fuite à la terre est supérieur à 3,5 mA et une mise à terre renforcée est nécessaire.

Les conducteurs de protection doivent toujours avoir un marquage de couleur jaune/vert (PE) ou jaune/vert/bleu (PEN). Instructions selon EN IEC 61800-5-1 :

- Le CUE doit être stationnaire, installé de manière permanente et branché en permanence sur l'alimentation secteur.
- La mise à terre doit être effectuée avec des conducteurs de protection doubles ou un conducteur de protection simple renforcé, d'au moins 10 mm² (8 AWG) de section.

6.1.2 Protection contre court-circuits, fusibles

Le CUE et le système d'alimentation doivent être protégés contre les court-circuits.

Grundfos exige que les fusibles de sauvegarde mentionnés au paragr. *16.6* soient utilisés comme protection contre les court-circuits.

Le CUE présente une protection complète contre les courtcircuits sur la sortie moteur.

6.1.3 Protection supplémentaire

Précautions Le courant de fuite à la terre est supérieur à 3,5 mA.

Si le CUE est branché à une installation électrique dans laquelle un disjoncteur de fuite à la terre (ELCB) est utilisé comme protection supplémentaire, le disjoncteur doit être marqué avec les symboles suivants :

Le disjoncteur est de type B.

Tenir compte du courant de fuite total de tout l'équipement électrique de l'installation.

Le courant de fuite du CUE pendant le fonctionnement normal est indiqué au paragr. 16.7.1 Alimentation réseau (L1, L2, L3).

Pendant le démarrage et pour des systèmes d'alimentation asymétriques, le courant de fuite peut être supérieur à la normale et provoquer le déclenchement du dispositif ELCB.

6.1.4 Protection du moteur

Le moteur ne nécessite pas de protection moteur externe. Le CUE protège le moteur contre une surcharge thermique et un blocage.

6.1.5 Protection contre la surintensité

Le CUE est équipé d'une protection interne de surintensité pour assurer la protection contre la surcharge sur la sortie moteur.

6.1.6 Protection contre les tensions transitoires du secteur

Le CUE est protégé contre les tensions transitoires du secteur selon la norme EN 61800-3, second environnement.

6.2 Branchements secteur et moteur

La tension et la fréquence d'alimentation sont indiquées sur la plaque signalétique du CUE. S'assurer que le CUE convient pour l'alimentation électrique du site d'installation.

La tension de sortie maximum du CUE est égale à la tension d'entrée.

Exemple: Si la tension est de 208 V, choisir un moteur homologué 208 V.

6.2.1 Interrupteur secteur

Un interrupteur principal peut être installé avant le CUE, selon les règlements locaux. Voir fig. 5.

6.2.2 Schéma de câblage

Les fils de la boite à bornes doivent être aussi courts que possible, sauf le conducteur de protection qui doit être assez long pour être le dernier fil débranché si le câble est arraché accidentellement.

Fig. 6 Schéma de câblage, branchement triphasé secteur

Borne		Fonction
91	(L1)	
92	(L2)	Alimentation triphasée
93	(L3)	-
95/99	(PE)	Mise à la terre
96	(U)	
97	(V)	Branchement moteur triphase, 0 à 100 % de la tension secteur
98	(W)	

Pour une connexion monophasée, utiliser L1 et L2.

Section conducteur:

Afin de déterminer la section conducteur requise pour une alimentation monophasé, multiplier l'ampérage maximum du CUE par 2 et choisir une

section conducteur correspondante à cette valeur d'ampérage.

Pour une tension triphasée, utiliser la même section conducteur que celle choisie pour le moteur. Pour le conducteur entre le CUE et le moteur, utiliser une charte de sélection standard basé sur la puissance du moteur.

6.2.3 Branchement secteur, boîtiers A2 et A3

Pour informations sur le boîtier, voir tableau du paragr. 16.1.

Vérifier que la tension et la fréquence d'alimenta-Précautions tion correspondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

1. Fixer la plaque de montage avec 2 vis.

Fig. 7 Mise en place de la plaque de montage

 Brancher le conducteur de mise à terre à la borne 95 (PE) et les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3) de la fiche secteur. Placer la fiche secteur dans la prise marquée MAINS.

Fig. 8 Branchement du conducteur de mise à terre et des conducteurs secteur

	Deux una connexion mononhogáe utilizar I d et
Mata	Pour une connexion monophasee, utiliser L1 et
Nota	12

Nota

3. Fixer le câble secteur à la plaque de montage.

Fig. 9 Fixation du câble secteur

6.2.4 Branchement moteur, boîtiers A2 et A3

Pour informations sur le boîtier, voir tableau du paragr. 16.1.

Conformément aux exigences CEM, le câble du Précautions moteur doit être blindé.

1. Brancher le conducteur de mise à terre à la borne 99 (PE), sur la plaque de montage. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W) de la fiche moteur.

Fig. 10 Branchement du conducteur de mise à terre et des conducteurs moteur

2. Placer la fiche moteur dans la prise marquée MOTOR. Fixer le câble blindé à la plaque de montage avec un serre-câble.

- TM03 9012 2807
- Fig. 11 Branchement de la fiche moteur et fixation du câble blindé

Nota

TM03 9014 2807

Le blindage des câbles doit être connecté à la terre aux deux extrémités.

contact physique avec le serre-câble de la plaque de montage.

6.2.5 Boîtier A5

Pour informations sur le boîtier, voir tableau du paragr. 16.1.

Branchement secteur

FM03 9013 2807

Vérifier que la tension et la fréquence d'alimentation correspondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de mise à terre à la borne 95 (PE). Voir fig. 12.
- 2. Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3) de la fiche secteur.
- 3. Placer la fiche secteur dans la prise marquée MAINS.
- 4. Fixer le câble secteur avec un serre-câble.

TM03 9017 2807

Fig. 12 Branchement secteur, A5

Branchement moteur

Conformément aux exigences CEM, le câble du Précautions moteur doit être blindé.

- 1. Brancher le conducteur de mise à terre à la borne 99 (PE). Voir fig. 13.
- 2. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W) de la fiche moteur.
- 3. Placer la fiche moteur dans la prise marquée MOTOR.
- 4. Fixer le câble blindé avec un serre-câble.

Fig. 13 Branchement moteur, A5

Nota

Le blindage du câble doit être exposé et en contact physique avec le serre-câble de la plaque de montage.

6.2.6 Boîtiers B1 et B2

Pour informations sur le boîtier, voir tableau du paragr. 16.1.

Branchement secteur

Vérifier que la tension et la fréquence d'alimenta-Précautions tion correspondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de mise à terre à la borne 95 (PE). Voir fig. 14.
- 2. Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).
- 3. Fixer le câble secteur avec un serre-câble.

Fig. 14 Branchement secteur, B1 et B2

Pour une connexion monophasée, utiliser L1 et

Branchement moteur

Conformément aux exigences CEM, le câble du Précautions moteur doit être blindé.

- 1. Brancher le conducteur de mise à terre à la borne 99 (PE). Voir fig. 15.
- 2. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un serre-câble.

Fig. 15 Branchement moteur, B1 et B2

Nota

Le blindage du câble doit être exposé et en contact physique avec le serre-câble de la plaque de montage.

6.2.7 Boîtiers B3 et B4

Pour informations sur le boîtier, voir tableau du paragr. 16.1.

Branchement secteur

Précautions

TM03 9019 2807

Vérifier que la tension et la fréquence d'alimentation correspondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de mise à terre à la borne 95 (PE). Voir fig. 16 et 17.
- 2. Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).
- 3. Fixer le câble secteur avec un serre-câble.

Branchement moteur

Précautions Conformément aux exigences CEM, le câble du moteur doit être blindé.

- 1. Brancher le conducteur de mise à terre à la borne 99 (PE). Voir fig. 16 et 17.
- 2. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un serre-câble.

Fig. 16 Branchements secteur et moteur, B3

Nota

Le blindage du câble doit être exposé et en

contact physique avec le serre-câble de la plaque

Fig. 17 Branchements secteur et moteur, B4

Le blindage du câble doit être exposé et en Nota contact physique avec le serre-câble de la plaque de montage.

6.2.8 Boîtiers C1 et C2

Pour informations sur le boîtier, voir tableau du paragr. 16.1.

Branchement secteur

Vérifier que la tension et la fréquence d'alimenta-Précautions tion correspondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de mise à terre à la borne 95 (PE). Voir fig. 18.
- 2. Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).

Branchement moteur

Précautions Conformément aux exigences CEM, le câble du moteur doit être blindé.

- 1. Brancher le conducteur de mise à terre à la borne 99 (PE). Voir fig. 18.
- 2. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un serre-câble.

Fig. 18 Branchements secteur et moteur, boîtiers C1 et C2

```
Nota
```

TM03 9446 4007

Le blindage du câble doit être exposé et en contact physique avec le serre-câble de la plaque de montage.

6.2.9 Boîtiers C3 et C4

Pour informations sur le boîtier, voir tableau du paragr. 16.1.

Branchement secteur

Vérifier que la tension et la fréquence d'alimentation correspondent aux valeurs indiquées sur la plaque signalétique du CUE et du moteur.

- 1. Brancher le conducteur de mise à terre à la borne 95 (PE). Voir fig. 19 et 20.
- 2. Brancher les conducteurs secteur aux bornes 91 (L1), 92 (L2), 93 (L3).

Branchement moteur

Précautions Conformément aux exigences CEM, le câble du moteur doit être blindé.

- 1. Brancher le conducteur de mise à terre à la borne 99 (PE). Voir fig. 19 et 20.
- 2. Brancher les conducteurs moteur aux bornes 96 (U), 97 (V), 98 (W).
- 3. Fixer le câble blindé avec un serre-câble.

Le blindage du câble doit être exposé et en

Fig. 19 Branchements secteur et moteur, C3

Fig. 20 Branchements secteur et moteur, C4

Le blindage du câble doit être exposé et en Nota contact physique avec le serre-câble de la plaque de montage.

6.3 Branchements des bornes de signaux

Si aucun interrupteur marche/arrêt externe n'est branché, court-circuiter les bornes 18 et 20 avec un fil court. Brancher les câbles de signaux selon les règles de bonnes pratiques, pour assurer une installation de CEM correcte. Voir paragr. *6.6 Installation de CEM correcte*.

- Utiliser des câbles de signaux à section de conducteur de min. 0,5 mm² (22 AWG) et max. 1,5 mm² (16 AWG).
- Pour les nouveaux systèmes, utiliser un câble de synchronisation blindé à 3 conducteurs.

6.3.1 Schéma de câblage, bornes de signaux

Fig. 21 Schéma de câblage, bornes de signaux

TM03 8800 2507

Borne	Туре	Fonction
12	+24 V sortie	Alimentation au capteur
13	+24 V sortie	Alimentation supplémentaire
18	DI 1	Entrée numérique, marche/arrêt
19	DI 2	Entrée numérique, programmable
20	GND	Terre pour entrées numériques
32	DI 3	Entrée numérique, programmable
33	DI 4	Entrée numérique, programmable
39	GND	Terre pour sortie analogique
42	AO 1	Sortie analogique, 0-20 mA
50	+10 V sortie	Alimentation potentiomètre
53	AI 1	Point consigne externe, 0-10 V/0/4-20 mA
54	AI 2	Entrée capteur, capteur 1, 0/4-20 mA
55	GND	Terre pour entrées analogiques
61	RS-485 GND Y	GENIbus, GND
68	RS-485 A	GENIbus, signal A (+)
69	RS-485 B	GENIbus, signal B (–)

Bornes 27, 29 et 37 non utilisées.

Nota

Le blindage RS-485 doit être raccordé à la terre.

Nota

6.3.2 Branchement minimal, bornes de signaux

Le fonctionnement n'est possible que si les bornes 18 et 20 sont branchées, par exemple avec un interrupteur marche/arrêt externe ou un fil court.

Fig. 22 Branchement minimal requis, bornes de signaux

6.3.3 Accès aux bornes de signaux

Toutes les bornes de signaux se trouvent derrière le couvercle de bornes sur le devant du CUE. Retirer le couvercle de bornes selon les indications de fig. 23 et 24.

Fig. 23 Accès aux bornes de signaux, A2 et A3

TM03 9003 2807

Nota

Fig. 24 Accès aux bornes de signaux, A5, B1, B2, B3, B4, C1, C2, C3 et C4

Fig. 25 Bornes de signaux (tous les boîtiers)

6.3.4 Mise en place du conducteur

- 1. Retirer l'isolation sur une longueur de 9 à 10 mm (0,34 à 0,39 pouces).
- Placer un tournevis à embout de 0,4 x 2,5 mm (0,015 x 0,1 pouces) max. dans l'orifice carré.
- Introduire le conducteur dans l'orifice circulaire correspondant. Retirer le tournevis. Le conducteur est alors fixé dans la borne.

Fig. 26 Mise en place du conducteur dans la borne de signal

6.3.5 Réglage des entrées analogiques, bornes 53 et 54

Les contacts A53 et A54 se trouvent derrière le panneau de commande. Ils permettent de régler le type de signal des deux entrées analogiques.

Les entrées sont réglées en usine avec signal de tension "U".

Si un capteur 0/4-20 mA est branché à la borne 54, l'entrée doit être réglé au signal de courant "|".

Couper l'alimentation électrique avant de régler le A54.

TM03 9025 2807

Retirer le panneau de commande pour régler le contact. Voir fig. 27.

Fig. 27 Réglage du contact A54 au signal de courant "I"

6.3.6 Branchement réseau GENIbus RS-485

Une ou plusieurs unités CUE peuvent être branchées à une unité de commande via GENIbus. Voir exemple fig. 28.

Fig. 28 Exemple d'un réseau GENIbus RS-485

Le potentiel de référence, GND, pour communication RS-485 (Y) doit être connecté à la borne 61.

Si plus d'une unité CUE est raccordée à un réseau GENIbus, le contact d'extrémité des CUE, aux deux extrémités du réseau, doit être réglé sur "ON" (extrémité du port RS-485).

Le réglage usine du contact de raccordement est "OFF" (non abouti).

Retirer le panneau de commande pour régler le contact. Voir fig. 29.

TM03 9006 2807

Fig. 29 Réglage du contact d'extrémité sur "ON"

6.4 Branchement des relais de signaux

À titre de précaution, les câbles de signaux Précautions doivent être séparés des autres groupes par une isolation renforcée sur toute leur longueur.

Fig. 30 Bornes pour relais de signaux en état normal (non activés)

Borne		Fonction
C 1	C 2	Commune
NO 1	NO 2	Contact normalement ouvert
NC 1	NC 2	Contact normalement fermé

Accès aux relais de signaux

Les sorties de relais sont positionnées comme indiqué en fig. 31 à 36.

Fig. 31 Bornes pour branchement relais, A2 et A3

Fig. 32 Bornes pour branchement relais, A5, B1 et B2

Fig. 33 Bornes pour branchement relais, C1 et C2

Fig. 34 Bornes pour branchement relais, B3

Fig. 35 Bornes pour branchement relais, B4

TM03 9440 4007

Fig. 36 Bornes pour branchement relais, C3 et C4, en haut à droite du CUE

6.5 Branchement du module d'entrée capteur MCB 114

Le MCB 114 est une option fournissant des entrées analogiques supplémentaires pour le CUE.

6.5.1 Configuration du MCB 114

TM03 9009 2807

TM03 9442 4007

TM03 9441 4007

Le MCB 114 est équipé de trois entrées analogiques pour les capteurs suivants :

- 1 capteur supplémentaire 0/4-20 mA.
- Voir paragr. 10.7.13 Capteur 2 (3.16).
 2 capteurs de température Pt100/Pt1000 pour la mesure de température des paliers du moteur ou d'une autre température, comme celle du liquide. Voir paragr. 10.7.18 Capteur de température 1 (3.21) et 10.7.19 Capteur de température 2 (3.22).

Une fois le MCB 114 installé, le CUE détectera automatiquement le capteur allumé, Pt100 ou Pt1000.

6.5.2 Schéma de câblage, MCB 114

Fig. 37 Schéma de câblage, MCB 114

Borne	Туре	Fonction
1 (VDO)	+24 V sortie	Alimentation au capteur
2 (I IN)	AI 3	Capteur 2, 0/4-20 mA
3 (GND)	GND	Terre pour entrée analogique
4 (TEMP) 5 (WIRE)	AI 4	Capteur de température 1, Pt100/Pt1000
6 (GND)	GND	Terre pour capteur de température 1
7 (TEMP) 8 (WIRE)	AI 5	Capteur de température 2, Pt100/Pt1000
9 (GND)	GND	Terre pour capteur de température 2

Bornes 10, 11 et 12 non utilisées.

6.6 Installation de CEM correcte

Ce paragr. indique les règles de bonnes pratiques pour l'installation du CUE. Suivre ces règles pour respecter la norme EN 61800-3, premier environnement.

- Pour les applications sans filtre de sortie, utiliser uniquement un moteur et des câbles de signaux à blindage métallique tressé.
- Aucune exigence spéciale requise pour les câbles d'alimentation, mises à part les exigences locales.
- Placer le blindage le plus près possible des bornes de raccordement. Voir fig. 38.
- Éviter d'aboutir le blindage avec des extrémités tordues.
 Voir fig. 39. Utiliser plutôt des serre-câbles ou des entrées de câble CEM vissées.
- Raccorder le blindage à la terre aux deux extrémités câbles de signaux et câbles du moteur. Voir fig. 40. Si le régulateur n'a pas de serre-câbles, raccorder seulement le blindage au CUE. Voir fig. 41.
- Pour les armoires électriques à convertisseurs de fréquence, éviter les câbles de signaux et les câbles de moteur non blindés.
- Pour les applications sans filtre de sortie, raccourcir le plus possible le câble du moteur pour limiter le niveau sonore et minimiser les courants de fuite.
- Les vis de branchement à la terre doivent toujours être serrées, avec ou sans câble branché.
- Les câbles secteur, moteur et signaux doivent si possible être séparés dans l'installation.

Si les règles de bonnes pratiques ci-dessus sont suivies, d'autres méthodes d'installation peuvent donner des résultats CEM identiques.

Fig. 38 Exemple de câble dégarni avec blindage

Fig. 39 Ne pas tordre les extrémités du blindage

Fig. 40 Exemple de branchement d'un câble de synchronisation à 3 conducteurs, avec blindage branché aux deux extrémités

Fig. 41 Exemple de branchement d'un câble de synchronisation à 3 conducteurs, avec blindage branché au CUE (régulateur sans serre-câbles)

6.7 Filtres RFI

Conformément aux exigences CEM, le CUE est fourni avec les types de filtre anti-parasite intégré (RFI) suivants :

Tension	Puissance à l'arbre typique P2	Type de filtre RFI
1 x 200-240 V*	1,1 à 7,5 kW (1,5 à 10 CV)	C1
3 x 200-240 V	0,75 à 45 kW (1 à 60 CV)	C1
3 x 380-500 V	0,55 à 90 kW (0,75 à 125 CV)	C1
3 x 525-600 V	0,75 à 7,5 kW (1 à 10 CV)	C3
3 x 525-690 V	11 à 90 kW (15 à 125 CV)	C3

* entrée monophasée - sortie triphasée.

Description des types de filtre RFI

- C1: Pour utilisation en zones domestiques
- C3: Pour utilisation en zones industrielles avec transformateur basse tension privé

Types de filtre RFI conformes à la norme EN 61800-3.

6.7.1 Équipement de catégorie C3

FM02 1325 0901

TM03 8812 2507

- Ce système de prise de force (PDS) n'est pas prévu pour utilisation sur réseau public à basse tension alimentant des locaux domestiques.
- Il faut s'attendre à des parasites lors de l'utilisation d'un tel réseau.

6.8 Filtres de sortie

Les filtres de sortie permettent de réduire la contrainte de tension sur le bobinage du moteur et la contrainte sur le système d'isolation du moteur ainsi que d'améliorer l'insonorisation du moteur entraîné par convertisseur de fréquence.

Deux types de filtres de sortie sont disponibles comme accessoires pour le CUE :

- filtres dU/dt
- filtres à onde sinusoïdale.

Utilisation des filtres de sortie

Type de pompe	Puissance à l'arbre typi- que P2	Filtre dU/dt [m / pieds]	Filtre à onde sinu- soïdale [m / pieds]
SP, BM, BMB avec	Jusqu'à 7,5 kW (10 CV)	-	0 à 300 / 0 à 1000
moteur 380 V et plus	11 kW et plus (15 CV)	0 à 150 / 0 à 500	150 à 300 / 500 à 1000
Autres pompes,	Jusqu'à 7,5 kW (10 CV)	-	0 à 300 / 0 à 1000
faible	11 kW et plus (15 CV)	0 à 150 / 0 à 500	150 à 300 / 500 à 1000
Autres pompes,	Jusqu'à 7,5 kW (10 CV)	-	0 à 300 / 0 à 1000
élevée	11 kW et plus (15 CV)	-	0 à 300 / 0 à 1000
Pompes à moteur 690 V	Toutes	-	0 à 300 / 0 à 1000

Les longueurs indiquées s'appliquent au câble du moteur.

Les fig. 42 et 43 montrent les installations avec et sans filtre ainsi que les emplacements de câble blindé et non blindé.

Fig. 43 Exemple d'installation avec filtre. Le câble entre le CUE et le filtre doit être court.

- Chaque extrémité du câble blindé entre le filtre et la boîte à bornes doit être reliée à la terre.
- Fig. 45 Pompe immergée avec boîte à bornes et câble blindé. Convertisseur de fréquence et filtre installés près du puits.

7. Modes de fonctionnement

Les modes de fonctionnement suivants sont réglés sur le panneau de commande, au menu FONCTIONNEMENT, écran 1.2. Voir paragr. *10.5.2*.

Mode de fonctionnement	Description
Normal	La pompe fonctionne avec le mode de régulation sélectionné.
Arrêt	La pompe a été arrêtée (indicateur lumineux vert clignote).
Min.	La pompe fonctionne à vitesse minimale.
Max.	La pompe fonctionne à vitesse maximale.

Exemple : La courbe de fonctionnement max. peut, par ex., servir lors de la désaération de la pompe pendant l'installation. **Exemple :** La courbe min. de fonctionnement peut, par ex., servir pendant les périodes de très faible débit.

8. Modes de régulation

Le mode de régulation est réglé sur le panneau de commande, au menu INSTALLATION, écran 3.1. Voir paragr. *10.7.1*.

Il existe deux modes de régulation de base.

Fonctionnement non régulé (boucle ouverte).

• Fonctionnement régulé (boucle fermée) avec capteur branché. Voir paragr. *8.1* et *8.2*.

8.1 Fonctionnement non régulé (boucle ouverte)

Exemple : Le fonctionnement en courbe constante peut, par ex., servir pour les pompes sans capteur branché.

Exemple : Utilisé en principe avec un système de régulation global tel que le MPC ou un autre régulateur externe.

FM04 3580 4608

9. Vue d'ensemble des menus

Fig. 46 Vue d'ensemble des menus

Structure des menus

Le CUE contient un guide de mise en service qui démarre lors de la première mise en service. Le guide de mise en service du CUE est suivi d'une structure de menus comprenant 4 menus principaux :

- 1. GÉNÉRALITÉS Permet d'accéder au guide de mise en service pour les réglages généraux du CUE.
- FONCTIONNEMENT Permet de régler le point consigne, sélectionner le mode de fonctionnement et réinitialiser les alarmes. Les 5 derniers avertissements et alarmes sont également visibles.
- 3. ÉTAT Affiche l'état du CUE et de la pompe. Il est impossible de modifier ou de régler les valeurs.
- 4. **INSTALLATION** Permet d'accéder à tous les paramètres. Possibilité d'effectuer un réglage détaillé du CUE.

 \diamond

ъl

ъ

Ф

 $\mathbf{\hat{\mathbf{v}}}$

 Δ

10. Réglages sur panneau de commande

10.1 Panneau de commande

Avertissement

Le bouton marche/arrêt du panneau de commande n'interrompt pas l'alimentation secteur du CUE. Il ne doit donc pas être utilisé comme interrupteur de sécurité.

Le bouton marche/arrêt a priorité absolue. En position "arrêt", le fonctionnement de la pompe est impossible.

Le panneau de commande est utilisé pour les réglages locaux du CUE. Les fonctions disponibles dépendent de la famille de pompes branchée au CUE.

Fig. 47 Panneau de commande du CUE

Boutons de modification

Bouton	Fonction
On/ Off	Préparation du fonctionnement/mise en marche et arrêt de la pompe.
OK	Sauvegarde des valeurs modifiées, réinitialisation des alarmes et extension du champ de valeur.
•	Modification des valeurs du champ de valeur.

Boutons de navigation

Bouton	Fonction
	Navigation d'un menu à l'autre. Si un menu est modifié, l'affichage se trouve toujours sur le haut du nouveau menu.
ΛV	Navigation vers le haut et vers le bas dans chaque menu.

Les boutons de modification du panneau de commande peuvent être réglés aux valeurs suivantes :

• Actif

FM03 8719 2507

Inactif.

Réglés sur Inactifs (verrouillés), les boutons de modification ne fonctionnent pas. Il est impossible de naviguer dans les menus et de lire les valeurs.

Pour activer ou désactiver les boutons, appuyer sur les flèches haut et bas simultanément pendant 3 secondes.

Modification du contraste d'écran

Appuyer sur OK et + pour un écran plus sombre.

Appuyer sur OK et - pour un écran plus clair.

Voyants indicateurs

L'état du fonctionnement de la pompe est indiqué par les voyants situés sur le devant du panneau de commande. Voir fig. 47. Ce tableau montre la fonction des voyants indicateurs.

Voyants indicateurs	Fonction	
	La pompe fonctionne ou a été arrêtée par une fonction d'arrêt.	
Marche (vert)	S'il clignote, la pompe a été arrêtée par l'utilisateur (menu CUE), mise en marche externe/arrêt ou synchronisation.	
Arrêt (orange)	La pompe a été arrêtée avec le bouton marche/arrêt.	
Alarme (rouge)	Indique une alarme ou un avertissement.	
Affichages, termes généraux		

Les fig. 48 et 49 indiquent les termes généraux de l'écran.

Numéro écran actuel/total

Fig. 48 Exemple d'écran du guide de mise en service

Fig. 49 Exemple d'écran du menu utilisateur

10.2 Retour au réglage d'usine

Suivre cette procédure pour revenir au réglage d'usine :

- 1. Couper l'alimentation électrique du CUE.
- 2. Appuyer sur On/Off, OK et + en allumant.
- Le CUE réinitialise tous les paramètres au réglage d'usine.
- L'écran s'allume lorsque la réinitialisation est terminée.

Vérifier que l'équipement branché est prêt pour la mise en service et que le CUE est branché à l'alimentation secteur.

Nota Disposer à portée de main des données de la plaque signalétique du moteur, de la pompe et du CUE.

Utiliser le guide de mise en service pour les réglages généraux du CUE, y compris le réglage du sens de rotation correct.

Le guide de mise en service démarre pour la première fois quand le CUE est branché à la tension d'alimentation. Il peut être redémarré dans le menu GÉNÉRALITÉS. Dans ce cas, tous les réglages effectués sont effacés.

Les listes précédées d'un point indiquent les réglages possibles. Les réglages usine sont indiqués en gras.

10.3.1 Écran d'accueil

• Appuyer sur OK. Le guide de mise en service démarre.

10.3.2 Langue (1/16)

Sélectionner la langue utilisée à l'écran

- Anglais UK •
 - Anglais US
- Allemand
- Francais
- Italien

٠

- Espagnol
- Portugais

Grec

٠

•

10.3.3 Unités (2/16)

Sélectionner les unités utilisées à l'écran :

- SI : m, kW, bar...
- US: ft, HP, psi...

10.3.4 Famille de pompes (3/16)

- Hongrois
- Chinois
- Japonais

Polonais

Néerlandais

Suédois

Finnois

Danois

- Russe
- Tchèque
- Coréen.

Sélectionner la famille de pompes conformément à la plaque signalétique de la pompe :

- CR. CRI. CRN. CRT
- SP, SP-G, SP-NE

• ...

Sélectionner "Autre" si le type de pompe n'est pas sur la liste.

10.3.5 Puissance moteur nominale (4/16)

Régler la puissance moteur nominale, P2, conformément à la plaque signalétique du moteur :

0,55 à 90 kW (0,75 à 125 HP).

La plage de réglage est fonction de la dimension et le réglage usine correspond à la puissance nominale du CUE.

10.3.6 Tension d'alimentation(5/16)

Sélectionner la tension d'alimentation conformément à la tension d'alimentation nominale du site d'installation.

Unité 1 x 200-240 V*	Unité 3 x 200-240 V	Unité 3 x 380-500 V
• 1 x 200 V	• 3 x 200 V	• 3 x 380 V
• 1 x 208 V	• 3 x 208 V	• 3 x 400 V
• 1 x 220 V	• 3 x 220 V	• 3 x 415 V
• 1 x 230 V	• 3 x 230 V	• 3 x 440 V
• 1 x 240 V.	• 3 x 240 V.	• 3 x 460 V
		• 3 x 500 V.
Unité 3 x 525-600 V	Unité 3 x 525-690 V	
• 3 x 575 V.	• 3 x 575 V	
	• 3 x 690 V.	

* entrée monophasée - sortie triphasée.

La plage de réglage dépend du type de CUE et les réglages usine correspondent à la tension d'alimentation nominale du CUF.

10.3.7 Courant moteur max. (6/16)

Plaque signalétique du mot Courant max., Imax.		
	8.00 A	
<	6/16	>

Régler le courant du moteur maximal conformément à la plaque signalétique du moteur :

• 0 à 999 A.

La plage de réglage dépend du type de CUE et les réglages usine correspondent à un courant du moteur typique à la puissance de moteur sélectionnée.

10.3.8 Vitesse (7/16)

Régler la vitesse nominale conformément à la plaque signalétique de la pompe :

0 à 9999 min⁻¹.

Le réglage usine dépend des précédentes sélections. Sur la base de la vitesse nominale réglée, le CUE règle automatiquement la fréquence du moteur à 50 ou 60 Hz.

10.3.9 Fréquence (7A/16)

Cet écran est affiché uniquement si l'entrée manuelle de fréquence est requise.

Régler la fréquence conformément à la plaque signalétique du moteur :

• 40 à 200 Hz.

Le réglage usine dépend des précédentes sélections.

10.3.10 Mode de régulation

Sélectionner le mode de régulation souhaité. Voir paragr. 10.7.1.

- Boucle ouverte
- Pression const.
- Pression diff. const.
- Pression diff. prop.
- Débit constant
- Température const.
- Niveau constant
- Autre valeur const.

Les réglages possibles et le réglage usine dépendent de la famille de pompes.

Le CUE déclenche une alarme si le mode de commande sélectionné nécessite un capteur et qu'aucun capteur n'a été installé. Pour continuer le réglage sans utiliser de capteur, sélectionner "Boucle ouverte". Lorsqu'un capteur a été connecté, régler le capteur et le mode de commande dans le menu INSTALLATION.

10.3.11 Débit nominal (8A/16)

Écran affiché uniquement si le mode de régulation sélectionné est la pression différentielle proportionnelle.

Régler le débit nominal conformément à la plaque signalétique de la pompe :

1 à 6550 m³/h (1 à 28840 gpm).

10.3.12 Hauteur nominale (8B/16)

Plaque Hauteu	signalétique de la p r
	90.0 m
<	8B/16 >

Écran affiché uniquement si le mode de régulation sélectionné est la pression différentielle proportionnelle.

Régler la hauteur nominale conformément à la plaque signalétique de la pompe :

• 1 à 999 m (1 à 3277 pieds).

10.3.13 Capteur branché à la borne 54 (9/16)

Régler la plage de mesure du capteur branché avec plage de signal de 4 à 20 mA. La plage de mesure dépend du mode de régulation sélectionné.

Pression différentielle	Pression différentielle
proportionnelle	constante
• 0-0,6 bar	• 0-0,6 bar
• 0-1 bar	• 0-1,6 bar
• 0-1,6 bar	• 0-2,5 bar
• 0-2,5 bar	• 0-4 bar
• 0-4 bar	• 0-6 bar
• 0-6 bar	• 0-10 bar
• 0-10 bar	Autre.
Autre.	
Pression constante	Débit constant
• 0-2,5 bar	• 1-5 m ³ /h
• 0-4 bar	• 2-10 m ³ /h
• 0-6 bar	• 6-30 m ³ /h
• 0-10 bar	• 15-75 m ³ /h
• 0-16 bar	Autre.
• 0-25 bar	
Autre.	
Température constante	Niveau constant
• –25 à 25 °C	• 0-0.1 bar
• 0à25 °C	• 0-1 bar
• 50 à 100 °C	• 0-2,5 bar
• 0 à 150 °C	• 0-6 bar
• Autre.	• 0-10 bar
	Autre.

Si le mode de régulation sélectionné est "Autre valeur const.", ou si la plage de mesure sélectionnée est "Autre", le capteur doit être réglé conformément à l'écran 9A/16, paragr. suivant.

E

10.3.14 Autre capteur branché à la borne 54 (9A/16)

Écran affiché uniquement si le mode de régulation "Autre valeur const." ou la plage de mesure "Autre" est sélectionné à l'écran 9/16.

- Signal de sortie capteur : 0-20 mA
 4-20 mA.
- Unités de mesure du capteur : bar, mbar, m, kPa, psi, ft, m³/h, m³/min, m³/s, l/h, l/min, l/s, gal/h, gal/m, gal/s, ft³/h, ft³/min, ft³/s, °C, °F, %.
- Plage de mesure du capteur.

La plage de mesure dépend du capteur branché et de l'unité de mesure sélectionnée.

10.3.15 Mise en eau et désaération (10/16)

10/16

Voir notice d'installation et d'entretien de la pompe.

Le réglage général du CUE est désormais terminé et le guide de mise en service est prêt pour le réglage du sens de rotation.

 Appuyer sur OK pour passer au réglage automatique ou manuel du sens de rotation.

10.3.16 Réglage automatique du sens de rotation (11/16)

Nota

Avertissement

Pendant le test, la pompe fonctionne un court instant. S'assurer de la sécurité des personnes et de l'équipement.

Avant le réglage du sens de rotation, le CUE effectue une adaptation automatique de certains types de pompes. Ceci prend quelques minutes. L'adaptation est effectuée pendant l'immobilisation.

Le CUE teste et règle automatiquement le sens de rotation correct, sans changement des branchements de câbles.

Ce test ne convient pas à tous les types de pompes. Dans certains cas, il n'est pas possible de déterminer avec certitude le sens de rotation correct. Dans ces cas, le CUE passe au réglage manuel. Le sens de rotation est alors déterminé sur la base des observations de l'installateur. CUE effectue alors un test de paramètres du moteur et vérifie si la pompe tourne dans le sens ...

11/16

...correct. Sinon le sens de rotation est automatiquement modifié. S'assurer...

11/16

...que le système est ouvert au débit. La pompe fonctionne pendant le test. Appuyer sur OK pour continuer.

Écrans d'information.

• Appuyer sur OK pour continuer.

11/16

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

Test du sens de Pour interromp sur n'importe q	rotation. re, appuyer uel bouton.
0%	100 %
13	8/16

La pompe fonctionne dans les deux sens de rotation et s'arrête automatiquement.

Il est possible d'interrompre le test. Arrêter la pompe et passer au réglage manuel du sens de rotation.

Le sens de rotation correct est alors réglé.

 Appuyer sur OK pour régler le point consigne. Voir Point consigne (15/16) à la page 69.

10.3.17 Point consigne (15/16)

Il n'a pas pu être déterminé

Le réglage automatique du sens de rotation a échoué.

 Appuyer sur OK pour passer au réglage manuel du sens de rotation.

Régler le point consigne conformément au mode de régulation et au capteur sélectionnés.

10.3.18 Les réglages généraux sont terminés (16/16)

 Appuyer sur OK pour que la pompe soit prête à fonctionner ou faire démarrer la pompe en mode de fonctionnement Normal. L'écran 1.1 du menu FONCTIONNEMENT est alors affiché.

10.3.19 Réglage manuel si le sens de rotation est visible (13/16)

Il doit être possible d'observer le ventilateur ou l'arbre du moteur.

Écrans d'information.

Appuyer sur OK pour continuer.

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

Rétroaction 0.00 bar Courant moteur 0.00 A

La pression réelle sera affichée pendant le test si un transmetteur de pression est branché. L'ampérage du moteur est toujours affiché pendant le test.

13/16

Indiquer si le sens de rotation est correct.

Le sens de rotation correct est alors réglé.

 Appuyer sur OK pour régler le point consigne. Voir Point consigne (15/16) à la page 69. Le sens de rotation est modifié et un nouveau test est effectué. Appuyer sur OK pour continuer.

Non

Le sens de rotation est incorrect.

13/16

 Appuyer sur OK pour répéter le test avec le sens de rotation inverse.

10.3.20 Réglage manuel avec sens de rotation non visible (13/16)

Il doit être possible d'observer la hauteur ou le débit.

13/16

...qu'elle fonctionne durant quelques secondes, dans une direction puis dans l'autre. Voir...

13/16

Écrans d'information.

Appuyer sur OK pour continuer.

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

La pression réelle sera affichée pendant le test si un transmetteur de pression est branché. L'ampérage du moteur est toujours affiché pendant le test.

Le premier test est terminé. Prendre note de la hauteur/du débit. Appuyer sur OK pour continuer. 4 13/15 Le sens de rotation sera modifié et le second test effectué. Appuyer sur OK pour continuer.

13/16

Le premier test est terminé.

 Noter la pression et/ou le débit. Appuyer sur OK pour continuer le test manuel avec le sens de rotation inverse.

La pompe démarre après 10 secondes.

Il est possible d'interrompre le test et de retourner à l'écran précédent.

La pression réelle sera affichée pendant le test si un transmetteur de pression est branché. L'ampérage du moteur est toujours affiché pendant le test.

Le second test est terminé.

Noter la pression et/ou le débit. Indiquer quel test a donné le rendement de pompe le plus élevé :

- Premier test
- Second test
- Effectuer un nouveau test.

Le sens de rotation correct est alors réglé.

 Appuyer sur OK pour régler le point consigne. Voir Point consigne (15/16) à la page 69.

10.4 Menu GÉNÉRALITÉS

Nota

Si le guide de mise en service a démarré, tous les réglages précédents sont effacés.

Le guide de mise en service doit être effectué avec le moteur à froid.

L'exécution répétée du guide de mise en service peut chauffer le moteur.

Le menu permet de retourner au guide de mise en service. Il n'est normalement utilisé que pendant la première mise en service du CUE.

10.4.1 Retour au guide de mise en service (0.1)

Indiquer votre choix :

- Oui
- Non.

Si *Oui* est sélectionné, tous les réglages sont effacés et le guide d'installation doit être terminé.

10.4.2 Modification du code type (0.2)

Cet écran est destiné au service uniquement.

10.4.3 Copie des réglages

Il est possible de copier les réglages d'un CUE et de les réutiliser sur un autre.

- Options :
- Pas de copie.
- vers CUE (copie les réglages du CUE).
- vers panneau de commande (copie les réglages sur un autre CUE).

Les unités CUE doivent avoir la même version de micro-logiciel. Voir paragr. *10.6.16 Version micrologiciel (2.16)*.

10.5 Menu FONCTIONNEMENT

10.5.1 Point consigne (1.1)

- Point de consigne réglé
- Point consigne réel
- Valeur réelle

Régler le point consigne dans les unités du capteur de rétroaction.

En mode de régulation **Boucle ouverte**, le point consigne est réglé en % du rendement maximal. La plage de réglage est située entre les courbes min. et max. Voir fig. 56.

Dans **tous les autres** modes de régulation, sauf pour la pression différentielle proportionnelle, la plage de réglage est égale à la plage de mesure du capteur. Voir fig. 57.

En mode de régulation **Pression différentielle proportionnelle**, la plage de réglage correspond à 25 %, à 90 % de la hauteur max. Voir fig. 58.

Si la pompe est branchée à un signal externe du point consigne, la valeur dans cet écran est la valeur maximale du signal externe du point consigne. Voir paragr. *13.2 Point consigne externe.*

10.5.2 Mode de fonctionnement (1.2)

Régler un des modes de fonctionnement suivants :

- Normal (régime normal)
- Arrêt
- Min.
- Max

Les modes de fonctionnement peuvent être réglés sans modifier le réglage du point consigne.

10.5.3 Indications de défaut

Les défauts entraînent deux types d'indication : alarme ou avertissement.

Une **"alarme"** active une indication d'alarme dans le CUE et entraîne une modification du mode de fonctionnement de la pompe, normalement un arrêt. Cependant, pour certains défauts entraînant le déclenchement d'une alarme, la pompe est réglée pour continuer à fonctionner, même en cas d'alarme.

Un **"avertissement"** active une indication d'avertissement dans le CUE, mais la pompe ne modifie pas son mode de fonctionnement ou de régulation.

Alarme (1.3)

En cas d'alarme, la cause est affichée à l'écran. Voir paragr. *15.1 Liste des avertissements et des alarmes*.

Avertissement (1.4)

En cas d'avertissement, la cause est affichée à l'écran. Voir paragr. 15.1 Liste des avertissements et des alarmes.

10.5.4 Journal des défauts

Pour les deux types de défauts, alarme et avertissement, le CUE comporte une fonction journal.

Journal des alarmes (1.5-1.9)

En cas de "alarme", les 5 dernières indications d'alarme apparaissent dans le journal des alarmes. "Alarme 1" affiche la dernière alarme, "Alarme 2" affiche l'avant-dernière alarme, etc. L'écran affiche 3 informations :

- l'indication d'alarme
- le code d'alarme
- le nombre de minutes pendant lesquelles la pompe a été branchée à l'alimentation électrique, après l'alarme.

Journal des avertissements (1.10-1.14)

En cas de "avertissement", les 5 dernières indications d'avertissement sont affichées dans le journal des avertissements. "Journal des avertissem. 1" affiche le dernier avertissement, "Journal des avertissem. 2" affiche l'avant dernier, etc.

L'écran affiche trois informations :

- l'indication d'avertissement
- le code d'avertissement
- le nombre de minutes pendant lesquelles la pompe a été branchée à l'alimentation électrique, après l'avertissement.

10.6 Menu ÉTAT

Les écrans affichés dans ce menu sont uniquement des écrans d'état. Il est impossible de modifier ou de régler les valeurs. La tolérance de valeur affichée est indiquée sous chaque écran. Les tolérances sont indiquées comme guide en % des valeurs maximales des paramètres.

10.6.1 Point consigne réel (2.1)

L'écran affiche le point consigne réel et le point consigne externe. Le **point consigne réel** est affiché en unités du capteur de rétroaction.

Le **point consigne externe** est affiché dans une plage de 0 à 100 %. Si l'influence du point consigne externe est désactivée, la valeur 100 % est affichée. Voir paragr. *13.2 Point consigne externe*.

10.6.2 Mode de fonctionnement (2.2)

Cet écran affiche le mode de fonctionnement courant (*Normal, Arrêt, Min.*, ou *Max.*). De plus, il indique l'endroit où le mode de fonctionnement est sélectionné (*Menu CUE, Bus, Externe,* ou *bouton Marche/arrêt*).
10.6.3 Valeur réelle (2.3)

Cet écran affiche la valeur réelle régulée.

Si aucun capteur n'est branché au CUE, "-" est affiché à l'écran.

10.6.4 Valeur mesurée, capteur 1 (2.4)

Cet écran affiche la valeur réelle mesurée par le capteur 1 branché à la borne 54.

Si aucun capteur n'est branché au CUE, "-" est affiché à l'écran.

10.6.5 Valeur mesurée, capteur 2 (2.5)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Cet écran affiche la valeur réelle mesurée par le capteur 2 branché à un MCB 114.

Si aucun capteur n'est branché au CUE, "--" est affiché à l'écran.

10.6.6 Vitesse (2.6)

Tolérance : ± 5 %

Cet écran affiche la vitesse actuelle de la pompe.

10.6.7 Puissance et intensité moteur (2.7)

Tolérance : ± 10 %

L'écran indique la puissance de la pompe en W ou kW et l'intensité du moteur en Ampère [A].

10.6.8 Heures de fonctionnement et consommation électrique (2.8)

Tolérance : ± 2 %

Cet écran indique le nombre d'heures de fonctionnement et la consommation électrique. La valeur des heures de fonctionnement est une valeur cumulée et ne peut pas être remise à zéro. La valeur de la consommation électrique est une valeur cumulée calculée depuis la mise en service de l'unité, et ne peut pas être remise à zéro.

10.6.9 État de lubrification des paliers du moteur (2.9)

L'écran affiche le nombre d'indications fournies par l'utilisateur concernant la lubrification et le moment de remplacement des paliers du moteur.

Une fois les paliers du moteur lubrifiés, confirmer cette action dans le menu INSTALLATION. Voir paragr. *10.7.17 Confirmation lubrification/remplacement des paliers du moteur (3.20)*. Une fois la lubrification confirmée, le chiffre figurant sur l'écran ci-dessus augmente d'une unité.

10.6.10 Délai jusqu'à la lubrification des paliers du moteur (2.10)

Cet écran est uniquement affiché si l'écran 2.11 n'est pas affiché. Cet écran indique le moment approprié pour lubrifier les paliers du moteur. Le régulateur surveille le profil de fonctionnement de la pompe et calcule la période entre les lubrifications des paliers. Si le profil de fonctionnement change, le délai calculé jusqu'à la lubrification peut aussi changer.

Le délai estimé jusqu'à la lubrification prend en compte la réduction de vitesse de la pompe.

Voir paragr. 10.7.17 Confirmation lubrification/remplacement des paliers du moteur (3.20).

10.6.11 Délai de remplacement des paliers du moteur (2.11)

Cet écran est uniquement affiché si l'écran 2.10 n'est pas affiché. Cet écran indique le moment approprié pour remplacer les paliers du moteur. Le régulateur surveille le profil de fonctionnement de la pompe et calcule la période entre les remplacements des paliers. Le délai estimé jusqu'au remplacement des paliers du moteur prend en compte la réduction de vitesse de la pompe.

Voir paragr. 10.7.17 Confirmation lubrification/remplacement des paliers du moteur (3.20).

10.6.12 Capteur de température 1 (2.12)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Cet écran affiche le point de mesure et la valeur réelle mesurée par le capteur de température 1 Pt100/Pt1000 branché au MCB 114. Le point de mesure est sélectionné à l'écran 3.21.

Si aucun capteur n'est branché au CUE, "-" est affiché à l'écran.

10.6.13 Capteur de température 2 (2.13)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Cet écran affiche le point de mesure et la valeur réelle mesurée par le capteur de température 2 Pt100/Pt1000 branché au MCB 114. Le point de mesure est sélectionné à l'écran 3.22.

Si aucun capteur n'est branché au CUE, "-" est affiché à l'écran.

10.6.14 Débit (2.14)

Cet écran est uniquement affiché si un débitmètre est configuré. Cet écran affiche la valeur réelle mesurée par un débitmètre branché à une entrée d'impulsion numérique (borne 33) ou à une entrée analogique (borne 54).

10.6.15 Débit cumulé (2.15)

Cet écran est uniquement affiché si un débitmètre est configuré. Cet écran affiche la valeur du débit cumulé et de l'énergie spécifique pour le transfert du liquide pompé.

La mesure du débit peut être branchée à une entrée d'impulsion numérique (borne 33) ou à une entrée analogique (borne 54).

10.6.16 Version micrologiciel (2.16)

L'écran affiche la version actuelle du logiciel.

10.6.17 Fichier configuration (2.17)

Cet écran affiche le fichier de configuration actuel.

10.7 Menu INSTALLATION

10.7.1 Mode de régulation (3.1)

Sélectionner un des modes de régulation suivants :

- Boucle ouverte
- Pression const.
- Pression diff. const.
- Pression diff. prop.
- Débit constant
- Température const.
- Niveau constant

Nota

Autre valeur const.

Si la pompe est branchée à un synchronisateur (bus), le mode de régulation ne peut pas être sélectionné via le CUE. Voir paragr. 13.3 Signal GENIbus.

10.7.2 Régulateur (3.2)

Le CUE comporte un réglage usine de gain (K_p) et temps intégré (T_i). Cependant, si le réglage usine n'est pas optimal, le gain et le temps intégral peuvent être modifiés à l'écran.

- Le gain (K_p) peut être réglé dans une plage de 0,1 à 20.
- Le temps intégral (T_i) peut être réglé dans une plage de 0,1 à 3600 s. Si 3600 s est sélectionné, le régulateur fonctionne comme régulateur P.
- Il est aussi possible de régler le régulateur en régulation inverse. C'est à dire que si le point consigne augmente, la vitesse est réduite. En cas de régulation inverse, le gain (K_p) doit être réglé dans une plage de -0,1 à -20.

Le tableau ci-dessous indique les réglages conseillés du régulateur :

	к		
Système/ application	Système de chauf- fage ¹⁾	Тi	
	0	.2	0,5
	SP, SP-G,	SP-NE: 0,5	0,5
CUE	0	.2	0,5
	SP, SP-G,	SP-NE: 0,5	0,5
	0	2	0,5
	-2	100	
	0,5	-0,5	10 + 5L ₂
	0	10 + 5L ₂	
	0,5	-0,5	30 + 5L ₂ *
	0	0,5*	
	0	L ₁ < 5 m : 0,5* L ₁ > 5 m : 3* L ₁ > 10 m : 5*	

* T_i = 100 secondes (réglage d'usine).

- 1. Dans les systèmes de chauffage, une augmentation des performances de la pompe entraîne une **augmentation** de la température au capteur.
- Dans les systèmes de refroidissement, une augmentation des performances de la pompe entraîne une **baisse** de la température au capteur.
- L₁ = Distance en [m] entre la pompe et le capteur.
- L₂ = Distance en [m] entre l'échangeur de chaleur et le capteur.

Comment régler le régulateur PI

Dans la plupart des applications, le réglage usine des constantes K_p et T_i du régulateur assure un fonctionnement optimal de la pompe. Cependant, dans certaines applications, un réglage du régulateur peut être nécessaire.

Procédure

- Augmenter la valeur du gain (K_p) jusqu'à ce que le moteur devienne instable. Pour voir l'instabilité, observer si la valeur mesurée commence à fluctuer. L'instabilité est également audible puisque le moteur commence à vibrer de haut en bas. Certains systèmes, comme les régulateurs de température, sont lents à réagir. Il peut alors s'avérer difficile d'observer l'instabilité du moteur.
- 2. Régler le gain (K_p) à la moitié de la valeur provoquant l'instabilité du moteur. Réglage correct du gain.
- 3. Réduire le temps intégral (T_i) jusqu'à ce que le moteur devienne instable.
- Régler le temps intégral (T_i) au double de la valeur provoquant l'instabilité du moteur. Réglage correct du temps intégral.

Règles générales.

- Si le régulateur réagit trop lentement, augmenter K_p.
- Si le régulateur est fluctuant ou instable, amortir le système en réduisant K_p ou augmentant T_i.

10.7.3 Point consigne externe (3.3)

L'entrée du signal du point consigne externe (borne 53) peut se régler selon les types suivants :

- Actif
- Inactif.

Si *Actif* est sélectionné, le point consigne actuel est influencé par le signal connecté à l'entrée du point consigne externe. Voir paragr. *13.2 Point consigne externe*.

10.7.4 Relais de signal 1 et 2 (3.4 et 3.5)

Le CUE comporte 2 relais de signal. Sur l'écran ci-dessous, sélectionner les situations de fonctionnement dans lesquelles le relais de signal doit être activé.

Relais signal 1 Signal relais 1 activé pendant Alarme 3.4 INSTALLATION ¢ Prêt

- - Alarme
 - Fonctionnement
 - Pompe en marche
 - Inactif
 - Avertissement
 - Lubrifier.

- 3.5 INSTALLATIO
- Prêt
- Alarme
- Fonctionnement
- Pompe en marche
- Inactif
- Avertissement
- Lubrifier.

Pour distinguer alarme et avertissement, Nota voir paragr. 10.5.3 Indications de défaut.

10.7.5 Boutons sur le CUE (3.6)

Les boutons de modification (+, -, Marche/Arrêt, OK) du panneau de commande peuvent se régler aux valeurs suivantes :

- Actif
- Inactif

Réglés sur Inactifs (verrouillés), les boutons de modification ne fonctionnent pas. Régler les boutons sur Inactif si la pompe doit être régulée via un système de régulation externe.

Pour activer les boutons, appuyer sur les flèches haut et bas simultanément pendant 3 secondes.

10.7.6 Protocole (3.7)

Cet écran affiche la sélection protocole pour le port RS-485 du CUE. Le protocole peut se régler sur les valeurs suivantes :

- GENIbus .
- FC
- FC MC.

Si GENIbus est sélectionné, la communication est réglée selon la norme GENIbus Grundfos. FC et FC MC sont destinés au service uniquement.

10.7.7 Numéro de la pompe (3.8)

Cet écran affiche le numéro GENIbus. Un numéro compris entre 1 et 199 peut être attribué à la pompe. En cas de communication bus, un numéro doit être attribué à chaque pompe.

Le réglage usine est "--".

10.7.8 Entrées numériques 2, 3 et 4 (3.9 à 3.11)

Les entrées numériques du CUE (bornes 19, 32 et 33) peuvent se régler séparément pour différentes fonctions.

Sélectionner une des fonctions suivantes :

- Min. (courbe min.)
- Max. (courbe max.) ٠
- Défaut ext. (défaut externe)
- Flussostat (fluxostat)
- Réinitialisation alarme
- Marche à sec (depuis capteur externe) ٠
- Débit cumulé (débit impulsion, borne 33 uniquement)
- Inactif

La fonction sélectionnée est active si l'entrée numérique est activée (contact fermé). Voir aussi paragr. 13.1 Entrées numériques.

Min.

Une fois l'entrée activée, la pompe fonctionne selon la courbe min.

Max.

Une fois l'entrée activée, la pompe fonctionne selon la courbe max

Défaut ext.

Une fois l'entrée activée, un temporisateur démarre. Si l'entrée est activée pendant plus de 5 secondes, un défaut externe est indiqué. Si l'entrée est désactivée, la condition défaut cesse. La pompe ne peut être redémarrée que manuellement en remettant à zéro de l'indication de défaut.

Flussostat (fluxostat)

Une fois cette fonction sélectionnée, la pompe est arrêtée si un fluxostat branché détecte un débit faible.

Cette fonction ne peut être utilisée que si la pompe est branchée à un capteur de pression ou à un capteur de niveau et que la fonction arrêt est activée. Voir paragr. 10.7.10 et 10.7.11.

Réinitialisation alarme

Une fois l'entrée activée. l'alarme est réinitialisée si la cause d'alarme n'existe plus.

Marche à sec

Si cette fonction est sélectionnée, un manque de pression d'admission ou un manque d'eau peut être détecté. L'utilisation d'un accessoire est nécessaire, par exemple :

- un capteur de marche à sec Grundfos Liqtec[®],
- un capteur de pression installé côté aspiration d'une pompe,
- un interrupteur à flotteur installé côté aspiration d'une pompe.

Si un manque de pression d'admission ou un manque d'eau est détecté (*Marche à sec*), la pompe s'arrête. La pompe ne peut pas redémarrer tant que l'entrée est activée.

Le redémarrage peut être différé jusqu'à 30 minutes, selon la famille de pompes.

Débit cumulé

Si cette fonction est réglée pour une entrée numérique 4 et qu'un capteur d'impulsion est branché à la borne 33, le débit cumulé peut être mesuré.

10.7.9 Entrée de débit numérique (3.12)

Cet écran n'est affiché que si un débitmètre est configuré à l'écran 3.11.

Cet écran permet le réglage du volume de chaque impulsion pour la fonction *débit cumulé*, avec capteur d'impulsions branché à la borne 33.

Plage de réglage :

• 0 à 1000 litres/impulsion (0 à 265 gallons/impulsion).

Le volume peut se régler dans l'unité sélectionnée sur le guide de mise en service.

10.7.10 Pression constante avec fonction arrêt (3.13)

Réglages

La fonction arrêt peut se régler aux valeurs suivantes :

- Actif
- Inactif.

La bande marche/arrêt peut se régler aux valeurs suivantes :

- Le réglage usine de ∆H est 10 % du point consigne réel.
- ∆H peut se régler dans une plage de 5 % à 30 % du point consigne réel.

Conditions de fonctionnement de la fonction arrêt

La fonction arrêt ne peut être utilisée que si le système comporte un capteur de pression, un clapet anti-retour et un réservoir à diaphragme.

Descriptions

La fonction arrêt permet de passer du fonctionnement marche/ arrêt faible débit au fonctionnement continu haut débit.

Fig. 50 Pression constante avec fonction arrêt. Différence entre les pressions de démarrage et d'arrêt (Δ H)

Un faible débit peut être détecté de deux manières :

- 1. par une "fonction de détection faible débit" qui fonctionne si l'entrée numérique n'est pas réglée pour un fluxostat.
- 2. par un fluxostat branché à l'entrée numérique.

1. Fonction de détection faible débit

La pompe contrôle régulièrement le débit en réduisant la vitesse pendant un bref délai. Si la modification de pression est inexistante ou faible, le débit est faible.

La vitesse augmente jusqu'à ce que la pression d'arrêt (point consigne réel + 0,5 x Δ H) soit atteinte et que la pompe s'arrête après quelques secondes. La pompe redémarre au plus tard quand la pression tombe à la pression de démarrage (point consigne réel – 0,5 x Δ H).

Si le débit pendant la période d'arrêt est plus élevé que la limite de bas débit, la pompe redémarre avant que la pression tombe à la pression de démarrage.

Au redémarrage, la pompe réagit de la manière suivante :

- 1. Si le débit dépasse la limite de faible débit, la pompe revient à un fonctionnement continu à pression constante.
- 2. Si le débit est toujours inférieur à la limite de faible débit, la pompe continue en fonctionnement marche/arrêt. Elle continue de fonctionner en marche/arrêt jusqu'à ce que le débit dépasse la limite de faible débit. Quand le débit dépasse la limite de faible débit, la pompe revient à un fonctionnement continu.

2. Détection de faible débit avec fluxostat

Si l'entrée numérique est activée à cause d'un faible débit, la vitesse augmente jusqu'à ce que la pression d'arrêt (point consigne réel + 0,5 x Δ H) soit atteinte, puis la pompe s'arrête. Quand la pression baisse jusqu'à la pression de démarrage, la pompe redémarre. Si il n'y a toujours pas de débit, la pompe atteint la pression d'arrêt et s'arrête. S'il y a du débit, la pompe continue à fonctionner suivant le point consigne.

Le clapet anti-retour doit toujours être installé avant le capteur de pression. Voir fig. 51 et 52.

Précautions

Si un fluxostat est utilisé pour détecter le bas débit, il doit être installé sur le côté du système, après le réservoir à diaphragme.

Fig. 52 Position du clapet anti-retour et du capteur de pression dans un système à pression d'admission positive

Réservoir à diaphragme

La fonction arrêt nécessite un réservoir à diaphragme d'une certaine dimension minimale. Le réservoir doit être installé le plus près possible après la pompe. La pression de précharge doit être 0,7 x point consigne réel.

Dimension conseillée du réservoir à diaphragme :

Débit nominal de la pompe [m ³ /h / gpm]	Dimension typique du réservoir à diaphragme [litres / gallons]				
0-6 / 0-26	8 / 2				
7-24 / 27-105	18 / 4,4				
25-40 / 106-176	50 / 14				
41-70 / 177-308	120 / 34				
71-100 / 309-440	180 / 62				

Avec un réservoir à diaphragme de la dimension mentionnée cidessus installé dans le système, le réglage usine ΔH est correct. Si le réservoir installé est trop petit, la pompe démarre et s'arrête trop souvent. Pour y remédier, augmenter ΔH .

10.7.11 Niveau constant avec fonction arrêt (3.13)

Réglages

La fonction arrêt peut se régler aux valeurs suivantes :

- Actif
- Inactif.
- La bande marche/arrêt peut se régler aux valeurs suivantes :
- Le réglage usine ∆H est 10 % du point consigne réel.
- ΔH peut se régler dans une plage de 5 % à 30 % du point consigne réel.

Une fonction intégrée de détection de faible débit mesure automatiquement et enregistre la consommation de puissance à env. 50 % et 85 % de la vitesse nominale.

- Si Actif est sélectionné, procéder de la manière suivante.
- 1. Fermer la soupape d'isolation pour créer une condition de non-débit.
- 2. Appuyer sur OK pour démarrer un réglage automatique.

Conditions de fonctionnement de la fonction arrêt

Il n'est possible d'utiliser la fonction d'arrêt du niveau constant si le système comprend un capteur de niveau et que toutes les soupapes peuvent être fermées.

Description

La fonction arrêt permet de passer du fonctionnement marche/ arrêt faible débit au fonctionnement continu haut débit.

Fig. 53 Niveau constant avec fonction arrêt. Différence entre niveaux de démarrage et d'arrêt (Δ H)

Un faible débit peut être détecté de deux manières :

- 1. par une fonction de détection faible débit intégrée
- 2. par un fluxostat branché à une entrée numérique.

1. Fonction de détection faible débit

La détection de faible débit intégrée est basée sur la mesure de la vitesse et de la puissance.

Si un faible débit est détecté, la pompe s'arrête. Quand le niveau atteint le niveau de démarrage, la pompe redémarre. S'il n'y toujours pas de débit, la pompe atteint le niveau d'arrêt puis s'arrête. S'il y a du débit, la pompe continue à fonctionner selon le point consigne.

2. Détection de faible débit avec fluxostat

Si l'entrée numérique est activée à cause d'un faible débit, la vitesse augmente jusqu'à ce que le niveau d'arrêt (point consigne réel – 0,5 x Δ H) soit atteint puis la pompe s'arrête. Quand le niveau atteint le niveau de démarrage, la pompe redémarre. S'il n'y a toujours pas de débit, la pompe atteint le niveau d'arrêt puis s'arrête. S'il y a du débit, la pompe continue à fonctionner selon le point consigne.

10.7.12 Capteur 1 (3.15)

Réglage du capteur 1 branché à la borne 54. Il s'agit d'un capteur de rétroaction.

Sélectionner une des valeurs suivantes :

- Signal de sortie capteur :
 - 0-20 mA 4-20 mA.
 - Unités de mesure du capteur :
 - bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Plage de mesure du capteur.

Réglage du capteur 2 branché au module d'entrée capteur MCB 114.

Sélectionner une des valeurs suivantes :

- Signal de sortie capteur : 0-20 mA 4-20 mA.
- Unités de mesure du capteur : bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Plage de mesure du capteur : 0-100 %.

10.7.14 Service/secours (3.17)

Réglages

La fonction service/secours peut se régler aux valeurs suivantes :

Actif

Inactif.

Procédure d'activation de la fonction service/secours :

- 1. Brancher une des pompes au secteur. Régler la fonction service/secours sur Inactif. Effectuer les réglages nécessaires dans les menus FONCTIONNEMENT et INSTALLATION.
- 2. Régler le mode de fonctionnement sur Arrêt dans le menu FONCTIONNEMENT.
- 3. Brancher l'autre pompe au secteur. Effectuer les réglages nécessaires dans les menus FONCTIONNEMENT et INSTALLATION. Régler la fonction service/secours sur Actif.

La pompe en service cherche l'autre pompe et règle automatiquement la fonction service/secours de cette pompe sur Actif. Si elle ne trouve pas l'autre pompe, un défaut est indiqué.

Les deux pompes doivent être branchées électriquement via GENIbus. Rien d'autre ne doit être branché au GENIbus.

La fonction service/secours s'applique à 2 pompes branchées en parallèle et régulées via GENIbus. Chaque pompe doit être branchée à son propre CUE et capteur.

Principaux objectifs de la fonction :

- Démarrer la pompe de secours si la pompe en service s'arrête pour cause d'alarme.
- Alterner les pompes au moins toutes les 24 heures. •

10.7.15 Plage de fonctionnement (3.18)

Comment régler la plage de fonctionnement :

- Régler la vitesse minimum dans la plage d'une vitesse minimum dépendante de la pompe à la vitesse maximum réglée. Le réglage d'usine dépend du type de pompe.
- Régler la vitesse maximum dans la plage de vitesse minimum réglée à la vitesse maximum dépendante de la pompe. Le réglage d'usine correspond à 100 %, soit la vitesse indiquée sur la plaque signalétique de la pompe.

L'écart entre la vitesse minimum et la vitesse maximum correspond à la plage de fonctionnement réel de la pompe.

La plage de fonctionnement peut être modifiée par l'utilisateur à l'intérieur de la plage de vitesse dépendante de la pompe. Pour certains types de pompe, le fonctionnement hypersynchrone (vitesse maxi supérieure à 100 %) est possible. Cela nécessite un moteur surdimensionné pour fournir la puissance nécessaire pendant le fonctionnement hypersynchrone.

Fig. 54 Réglage des courbes min. et max. en % de rendement max.

10.7.16 Surveillance des paliers du moteur (3.19)

La fonction surveillance des paliers du moteur peut se régler selon les valeurs suivantes :

Actif

Inactif.

Si la fonction est réglée sur *Actif*, le CUE émet un avertissement pour indiquer quand les paliers du moteur doivent être lubrifiés ou remplacés.

Description

La fonction de surveillance intégrée des paliers du moteur permet de fournir une indication sur le moment approprié pour lubrifier ou remplacer les paliers moteur. Voir écrans 2.10 et 2.11.

L'indication d'avertissement et le délai estimé tiennent compte de la réduction de vitesse de la pompe. La température des paliers est comprise dans le calcul si les capteurs de température sont installés et branchés à un module d'entrée capteur MCB 114.

Le compteur poursuit le calcul, même si la fonction est commutée sur Inactif. Aucun avertissement de lubrification n'est alors indiqué.

10.7.17 Confirmation lubrification/remplacement des paliers du moteur (3.20)

FM04 3581 4608

Cette fonction peut se régler aux valeurs suivantes :

- Lubrifié
- Remplacé
- Rien de fait.

Une fois les paliers du moteur lubrifiées ou remplacés, confirmer cette action sur l'écran ci-dessus en appuyant sur "OK".

Lubrifié ne peut pas être sélectionné pendant un laps de temps après confirmation de lubrification.

Lubrifié

Si l'avertissement Lubrifier les paliers du moteur est confirmée,

- le compteur est mis à 0.
- le nombre de lubrifications est augmenté de 1.

Quand le nombre de lubrifications atteint le nombre admissible, l'avertissement *Remplacer les paliers du moteur* s'affiche à l'écran.

Remplacé

Si l'avertissement Remplacer les paliers du moteur est confirmé,

- le compteur est mis à 0.
- le nombre de lubrifications est mis à 0.
- le nombre de remplacements des paliers du moteur est augmenté de 1.

10.7.18 Capteur de température 1 (3.21)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Sélectionner la fonction d'un capteur de température 1 Pt100/Pt1000 branché à un MCB 114 :

- Roulement à extrémité D
- Roulement à extrémité ND
- Température autre liquide 1
- Température autre liquide 2
- Enroulement du moteur
- Température liquide pompé
- Température ambiante
- Inactif.

10.7.19 Capteur de température 2 (3.22)

Écran affiché uniquement si un module d'entrée capteur MCB 114 est installé.

Sélectionner la fonction d'un capteur de température 2 Pt100/Pt1000 branché à un MCB 114 :

- Roulement à extrémité D
- Roulement à extrémité ND
- Température autre liquide 1
- Température autre liquide 2
- Enroulement du moteur
- Température liquide pompé
- Température ambiante
- Inactif.

10.7.20 Arrêt chauffage (3.23)

La fonction arrêt chauffage peut se régler aux valeurs suivantes :

• Actif

Inactif.

Si la fonction est réglée sur *Actif* et que la pompe est arrêtée par une commande d'arrêt, un courant est appliqué aux enroulements du moteur.

La fonction arrêt chauffage préchauffe le moteur pour éviter la condensation.

10.7.21 Rampes (3.24)

Régler le délai pour les deux rampes, accélération et décélération :

- Réglage usine :
- selon la puissance.
- Plage du paramètre de rampe : 1-3600 s.

Le délai d'accélération est la durée entre 0 min⁻¹ et la vitesse nominale du moteur. Sélectionner un délai d'accélération de manière à ce que le courant de sortie n'excède pas la limite maximale de courant du CUE.

Le délai de décélération est la durée entre la vitesse nominale du moteur et 0 min⁻¹. Sélectionner un délai de décélération de manière à ce qu'il n'y ait pas de surtension et que le courant généré n'excède pas la limite maximale de courant du CUE.

Fig. 55 Accélération et décélération, écran 3.24

11. Réglage avec PC Tool E-products

Les réglages spéciaux, différents des réglages disponibles via le CUE, nécessitent l'utilisation du PC Tool E-products Grundfos. L'assistance d'un technicien ou d'un ingénieur de Grundfos est requise. Contacter l'entreprise Grundfos locale pour plus d'informations.

12. Priorité des réglages

Le bouton marche/arrêt a priorité absolue. En position "arrêt", le fonctionnement de la pompe est impossible.

Le CUE peut être régulé simultanément de différentes manières. Si 2 modes de fonctionnement ou plus sont actifs simultanément, le mode de fonctionnement à priorité la plus élevée est en vigueur.

12.1 Régulation sans signal bus, mode de fonctionnement local

Priorité	Menu CUE	Signal externe
1	Arrêt	
2	Max.	
3		Arrêt
4		Max.
5	Min.	Min.
6	Normal	Normal

Exemple : Si un signal externe active le mode de fonctionnement *Max.*, seul un arrêt de la pompe est possible.

12.2 Régulation avec signal bus, mode de fonctionnement régulé à distance

Priorité	Menu CUE	Signal externe	Signal bus
1	Arrêt		
2	Max.		
3		Arrêt	Arrêt
4			Max.
5			Min.
6			Normal

Exemple : Si un signal bus active le mode de fonctionnement *Max.*, seul un arrêt de la pompe est possible.

13. Signaux de régulation externes

13.1 Entrées numériques

Vue d'ensemble des fonctions en relation avec un contact fermé.

Borne	Туре	Fonction
18	DI 1	Marche/arrêt de la pompe
19	DI 2	 Min. (courbe min.) Max. (courbe max.) Défaut ext. (défaut externe) Flussostat (fluxostat) Réinitialisation alarme Marche à sec (depuis capteur externe) Inactif.
32	DI 3	 Min. (courbe min.) Max. (courbe max.) Défaut ext. (défaut externe) Flussostat (fluxostat) Réinitialisation alarme Marche à sec (du capteur externe) Inactif.

 Min. (courbe min.) Max. (courbe max.) Défaut ext. (défaut externe) Flussostat (fluxostat) Réinitialisation alarme Marche sec (du capteur externe) Débit cumulé (débit impulsion) Inactif. 	Borne	Туре	Fonction
	33	DI 4	 Min. (courbe min.) Max. (courbe max.) Défaut ext. (défaut externe) Flussostat (fluxostat) Réinitialisation alarme Marche sec (du capteur externe) Débit cumulé (débit impulsion) Inactif.

La même fonction ne doit pas être sélectionnée pour plus d'une entrée. Voir fig. 21.

13.2 Point consigne externe

Borne	Туре	Fonction
53	AI 1	 Point consigne externe (0-10 V)

Le point consigne peut se régler à distance en branchant un transmetteur de signal analogique à l'entrée du point consigne (borne 53).

Boucle ouverte

En mode régulation *Boucle ouverte* (courbe constante), le point consigne réel peut se régler de façon externe, dans la plage allant de la courbe min. au point consigne réglé, via le menu CUE. Voir fig. 56.

Boucle fermée

Dans tous les autres modes de régulation, sauf pression différentielle proportionnelle, le point consigne réel peut se régler de facon externe, dans la plage allant de la valeur la plus basse de la plage de mesure du capteur (capteur min.) au point consigne réglé, via le menu CUE. Voir fig. 57.

Fig. 57 Relation entre le point consigne réel et le signal externe du point consigne, en mode de fonctionnement régulé

Exemple : Pour une valeur du capteur min. de 0 bar, un point consigne réglé via le menu CUE sur 3 bars et un point consigne externe à 80 %, le point consigne réel est calculé comme suit :

Point consi- gne réel	 (point consigne réglé via le menu CUE – = capteur min.) x % signal point consigne externe + capteur min. 				
	$= (3 - 0) \times 80 \% + 0$				
	= 2,4 bar.				

Pression différentielle proportionnelle

En mode régulation Pression différentielle proportionnelle, le point consigne réel peut se régler de façon externe, dans la plage allant de 25 % de la hauteur maximale au point consigne réglé, via le menu CUE. Voir fig. 58.

Fig. 58 Relation entre le point consigne réel et le signal externe du point consigne, en mode régulation pression différentielle proportionnelle

Exemple : À une hauteur maximale de 12 m, un point consigne de 6 m réglé via la menu CUE et un point consigne externe de 40 %, le point consigne réel est calculé comme suit :

hauteur maximale) x % du signal point onsigne externe + 25 % de la hauteur aximale $= (6 - 12 \times 25 \%) \times 40 \% + 12/4$

13.3 Signal GENIbus

Le CUE permet la communication en série via une entrée RS-485. La communication est effectuée selon le protocole GENIbus Grundfos. Elle permet le branchement à un système de gestion d'immeuble ou à un autre système de régulation externe.

Les paramètres de fonctionnement, tels que le point consigne et le mode de fonctionnement peuvent être réglés à distance via le signal bus. De plus, la pompe peut fournir des informations d'état sur les paramètres importants tels que valeur réelle du paramètre de régulation, puissance absorbée, indications de défaut.

Pour plus de détails, veuillez contacter Grundfos.

Si un signal bus est utilisé, le nombre de Nota réglages disponibles via le CUE est réduit.

13.4 Autres standard Bus

Grundfos offre différentes solutions bus avec communication conforme aux autres standard.

Pour plus de détails, veuillez contacter Grundfos.

14. Maintenance et révision

14.1 Nettoyage du CUE

Maintenir les ailettes de refroidissement et les pâles de soufflante propres pour permettre un refroidissement suffisant du CUE.

14.2 Kits de maintenance et pièces de rechange

Pour plus d'informations sur les kits de maintenance et les pièces de rechange, consulter www.grundfos.com > International website > WebCAPS.

15.1 Liste des avertissements et des alarmes

			État			
Cod	e et texte écran	Avertissement Alarme		Alarme verrouillée	Mode de fonction- nement	Réini- tialisa- tion
1	Courant de fuite trop élevé			•	Arrêt	Man.
2	Défaut de phase secteur		•		Arrêt	Aut.
3	Défaut externe		•		Arrêt	Man.
16	Autre défaut		•	•	Arrêt Arrêt	Aut. Man.
30	Remplacer les paliers du moteur	•			_	Man. ³⁾
32	Surtension	٠			-	Aut.
52	Sultension		•		Arrêt	Aut.
40	Sous tonsion	٠			-	Aut.
40	3003-101151011		•		Arrêt	Aut.
40	Quarkana		•		Arrêt	Aut.
48	Surcharge			٠	Arrêt	Man.
49	Surcharge		•		Arrêt	Aut.
	0 1	•			-	Aut.
55	Surcharge		•		Arrêt	Aut.
57	Marche à sec		•		Arrêt	Aut.
64	Température CUE trop élevée		•		Arrêt	Aut.
70	Température moteur trop élevée		•		Arrêt	Aut.
77	Défaut de communica- tion, service/attente	•			-	Aut.
89	Capteur 1 hors plage		•		1)	Aut.
91	Capteur de température 1 hors plage	•			-	Aut.
93	Capteur 2 hors plage	•			-	Aut.
96	Signal du point consigne hors plage		•		1)	Aut.
	Température palier trop	٠			_	Aut.
148	élevée		•		Arrêt	Aut.
	Température palier trop	•			-	Aut.
149	élevée		•		Arrêt	Aut.
155	Inrush fault		•		Arrêt	Aut.
175	Capteur de température 2 hors plage	•			_	Aut.
240	Lubrifier les paliers du moteur	•			_	Man. ³⁾
2/1	Défaut de phase	•			-	Aut.
241	moteur		•		Arrêt	Aut.
242	AMA ²⁾ a échoué	•			_	Man.

- ¹⁾ En cas d'alarme, le CUE change de mode de fonctionnement selon le type de pompe.
- ²⁾ AMA, Adaptation Moteur Automatique.
- ³⁾ Avertissement est remis à zéro à l'écran 3.20.

15.2 Mise à zéro des alarmes

En cas de défaut ou de dysfonctionnement du CUE, vérifier la liste des alarmes dans le menu FONCTIONNEMENT. Les 5 derniers avertissements et alarmes sont visibles dans les menus journal.

Contacter un technicien de Grundfos si une alarme se produit souvent.

15.2.1 Avertissement

Le CUE continue de fonctionner tant que l'avertissement est actif. L'avertissement reste actif jusqu'à l'élimination de la cause. Certains avertissements entraînent une condition d'alarme.

15.2.2 Alarme

En cas d'alarme, le CUE arrête la pompe ou change de mode de fonctionnement, selon le type d'alarme et de pompe. Voir paragr. *15.1 Liste des avertissements et des alarmes.*

Le fonctionnement de la pompe reprend dès que la cause de l'alarme est éliminée et que l'alarme est remise à zéro.

Remise à zéro manuelle d'une alarme

- Appuyer sur OK sur l'écran alarme.
- Appuyer deux fois sur Marche/Arrêt.
- Activer une entrée numérique DI 2-DI 4 réglée sur Remise à zéro alarme ou une entrée numérique DI 1 (Marche/arrêt).

Si la remise à zéro d'une alarme n'est pas possible, il se peut que le défaut ne soit pas corrigé ou que l'alarme soit verrouillée.

15.2.3 Alarme verrouillée

Si une alarme est verrouillée, le CUE arrête la pompe et se verrouille. Le fonctionnement de la pompe ne peut pas reprendre avant que l'alarme verrouillée soit corrigée et que l'alarme soit remise à zéro.

Remise à zéro d'une alarme verrouillée

 Mettre le CUE hors tension pendant env. 30 s. Mettre sous tension et appuyer OK sur l'écran alarme pour mettre à zéro l'alarme.

84

15.3 Voyants indicateurs

Ce tableau montre la fonction des voyants indicateurs.

Voyants indicateurs	Fonction
	La pompe fonctionne ou a été arrêtée par une fonction d'arrêt.
Marche (vert)	S'il clignote, la pompe a été arrêtée par l'utilisateur (menu CUE), mise en marche externe/arrêt ou synchronisation.
Arrêt (orange)	La pompe a été arrêtée avec le bouton marche/arrêt.
Alarme (rouge)	Indique une alarme ou un avertissement.

15.4 Relais signaux

Le tableau montre la fonction des relais signaux.

Туре	Fonction							
	• Prêt	Pompe en marche						
Relais 1	Alarme	Avertissement						
	Fonctionnement	Lubrifier.						
	• Prêt	Pompe en marche						
Relais 2	Alarme	 Avertissement 						
	Fonctionnement	Lubrifier.						

Voir aussi fig. 30.

16. Données techniques

16.1 Boîtier

Chaque armoire CUE se distingue par son boîtier. Le tableau indique la relation entre la classe et le type de boîtier.

Exemple :

Indiqué sur la plaque signalétique :

- Tension d'alimentation = 3 x 380-500 V.
- Puissance à l'arbre typique = 1,5 kW.
- Classe de boîtier = IP20.

Le tableau indique que le boîtier CUE est A2.

Puissance	e à l'arbre						Boîtier						
typique P2		1	1 x 200-240 V		3 x 200-240 V		3 x 38	3 x 380-500 V		3 x 525-600 V		3 x 525-690 V	
[kW]	[HP]	IP20 NEMA0	IP21 NEMA1	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP21 NEMA1	IP55 NEMA12	
0,55	0,75												
0,75	1												
1,1	1,5	A3		A5	۸2		۸0	۸.5					
1,5	2				72	۸.5	72	AJ	A3	A5			
2,2	3		B1	B1		AJ							
3	4		ы		۵3								
3,7	5				AJ								
4	5						A2						
5,5	7,5		B1	B1			٨٥	A5	A3	A5			
7,5	10		B2	B2	B3	B1	73						
11	15												
15	20				R4	B2	B3	B1					
18,5	25				D4						B2	B2	
22	30				C3	C1		B2					
30	40				00		B4	DZ					
37	50				C4	C2							
45	60				04	02	C3	C1					
55	75						03				C2	C2	
75	100						C4	C2					
90	125						0 [†]	02					

F

Fig. 60 Boîtiers A5, B1, B2, B3, B4, C1, C2, C3 et C4

Boîtier Puissance à l'arbre typique P2 1 x 200-240 V 3 x 200-240 V 3 x 380-500 V 3 x 525-600 V 3 x 525-690 V IP20 NEMA0 IP20 NEMA0 IP21 NEMA1 IP55 NEMA12 IP20 NEMA0 IP55 NEMA12 IP55 NEMA12 IP20 NEMA0 IP55 NEMA12 IP21 NEMA1 IP55 [kW] [HP] NEMA12 0,55 0,75 0,75 1 1,5 A3 A5 1,1 A2 A2 A5 2 1,5 A3 A5 A5 2,2 3 B1 B1 3 4 A3 3,7 5 4 5 A2 5,5 7,5 B1 B1 A5 A3 A5 A3 10 B2 B2 7,5 B3 B1 15 11 20 15 B2 В3 Β1 Β4 18,5 25 B2 B2 22 30 C1 СЗ B2 30 40 Β4 37 50 C4 C2 60 45 C1 C3 55 75 C2 C2 75 100 C4 C2 90 125

TM03 9000 2807

¹⁾ Les dimensions sont poids max., largeur et profondeur.

16.3 Environnement

Humidité relative	5-95 % RH
Température ambiante	Max. 50 °C (122 °F)
Température ambiante moyenne sur 24 heures	Max. 45 °C (113 °F)
Température ambiante min. à plein fonctionnement	0 °C (32 °F)
Température ambiante min. en fonctionnement réduit	–10 °C (14 °F)
Température pendant le stockage et le transport	–25 à 65 ℃ (–13 à 149 °F)
Durée de stockage	Max. 6 mois
Altitude max. au-dessus du niveau de la mer sans réduction du rendement	1000 m (3280 pieds)
Altitude max. au-dessus du niveau de la mer avec réduction de rendement	3000 m (9840 pieds)

F

Nota

Le CUE est fourni dans un emballage impropre au stockage en extérieur.

16.4 Couples de serrage des bornes

Poîtior	Couple de serrage [Nm / Ib-pieds]				
Boillei	Secteur	Moteur	Terre	Relais	
A2	1,8 / 1,3	1,8 / 1,3	3 / 2,2	0,6 / 0,4	
A3	1,8 / 1,3	1,8 / 1,3	3 / 2,2	0,6 / 0,4	
A5	1,8 / 1,3	1,8 / 1,3	3 / 2,2	0,6 / 0,4	
B1	1,8 / 1,3	1,8 / 1,3	3 / 2,2	0,6 / 0,4	
B2	4,5 / 3,3	4,5 / 3,3	3 / 2,2	0,6 / 0,4	
B3	1,8 / 1,3	1,8 / 1,3	3 / 2,2	0,6 / 0,4	
B4	4,5 / 3,3	4,5 / 3,3	3 / 2,2	0,6 / 0,4	
C1	10 / 7,4	10 / 7,4	3 / 2,2	0,6 / 0,4	
C2	14 ¹⁾ / 24 ²⁾ / 10,3 ¹⁾ / 17,7 ²⁾	14 ¹⁾ / 24 ²⁾ / 10,3 ¹⁾ / 17,7 ²⁾	3 / 2,2	0,6 / 0,4	
C3	10 / 7,4	10 / 7,4	3 / 2,2	0,6 / 0,4	
C4	14 ¹⁾ / 24 ²⁾ / 10,3 ¹⁾ / 17,7 ²⁾	14 ¹⁾ / 24 ²⁾ / 10,3 ¹⁾ / 17,7 ²⁾	3 / 2,2	0,6 / 0,4	

 $\label{eq:section} \hline \begin{array}{c} 1) \mbox{ Section conducteur} \leq 95 \mbox{ mm}^2 \mbox{ (4/0 AWG)}. \\ 2) \mbox{ Section conducteur} \geq 95 \mbox{ mm}^2 \mbox{ (4/0 AWG)}. \end{array}$

16.5 Longueur de câble

l onqueur maximale, câble moteur blindé	150 m
Eongueur maximale, cable moteur binde	(500 pieds)
Longueur maximale, câble moteur	300 m
non blindé	(1000 pieds)
	300 m
Longueur maximale, cable de signal	(1000 pieds)

16.6 Fusibles et section câble

Avertissement Toujours se conformer à la réglementation locale et nationale relative aux sections de câbles.

16.6.1 Section câble aux bornes de signal

Section max. câble aux bornes signal, conducteur rigide	1,5 mm ² (14 AWG)
Section max. câble aux bornes signal, conducteur flexible	1,0 mm ² (18 AWG)
Section min. câble aux bornes signal	0,5 mm ² (20 AWG)

16.6.2 Fusibles non UL et section conducteur au secteur et moteur

Puissance à l'arbre typique P2	Dimension fusible max.	Type de fusible	Section max. conducteur ¹⁾
[kW]	[Δ]		[mm ²]
1 x 200 240 V	[4]		[iiiii]
1 X 200-240 V	20	aC	4
1,1	20	gg	4
2.2	40	gG	10
3	40	gG	10
37	40	gg	10
5,7	80	gg	10
7.5	100	gG	35
7,5 3 x 200-240 V	100	gg	35
0.75	10	aG.	1
1 1	20	gC	4
1,1	20	ge	4
22	20	ge gG	4
3	32	ge gG	4
37	32	ge gG	4
5.5	63	ge gG	10
7.5	63	ge gG	10
11	63	ge gG	10
15	80	oG	35
18.5	125	nG	50
22	125	nG	50
30	120	ge	50
37	200	aR	95
45	250	aR	120
3 x 380-500 V	200		120
0.55	10	aG	Δ
0,55	10	ge	
1 1	10	gC	4
1,1	10	ge	4
2.2	20	gC	4
3	20	gC	4
3	20	gG	4
55	32	ge	4
7.5	32	gC	4
11	63	ge	10
15	63	ge gG	10
18.5	63	ge	10
22	63	ge gG	35
30	80	ge	35
37	100	aG	50
45	125	aG	50
55	160	aG	50
75	250	aR	95
90	250	aR	120
3 x 525-600 \/	200	aix	120
0.75	10	aG	Δ
1 1	10	90 aC	
1.5	10	90 aC	7
	20	90 70	+ /
2,2	20	90 70	+ /
3	20	yG gG	+ /
55	20	yG gG	+ /
7.5	32	yG gG	4
1,0 3 x 525 600 V	32	yG	4
11	63	aG.	35
15	63	yG gG	35
10	63	yG gG	35
20,0	60	yG rG	35
22	60	yG rG	35
30	00	yG rG	05
	100	yG rG	90
40	100	уG	30

Puissance à l'arbre typique P2	Dimension fusible max.	Type de fusib	Section max. le conducteur ¹⁾
[kW]	[A]		[mm ²]
55	125	gG	95
75	160	gG	95
90	160	gG	95
¹⁾ Câblo do motour blindó	câble d'alimentation	non blindó	AWG voir parage 16.6.2

¹⁾ Câble de moteur blindé, câble d'alimentation non blindé. AWG, voir paragr. 16.6.3.

	16.6.3 Fusibles U	et section conducteur	au secteur et moteur
--	-------------------	-----------------------	----------------------

Puissance à l'arbre				Type de fu	isible			Section max.
typique P2	Bussmann	Bussmann	Bussmann	SIBA	Littel Fuse	Ferraz-Shawmut	Ferraz-Shawmut	conducteur 1)
[kW]	RK1	J	т	RK1	RK1	CC	RK1	[AWG] ²⁾
1 x 200-240 V								
1,1	KTN-R20	-	-	-	-	-	-	10
1,5	KTN-R30	-	_	-	-	-	-	7
2,2	KTN-R40	-	_	-	-	-	-	7
3	KTN-R40	-	_	-	_	_	-	7
3,7	KTN-R60	_	_	-	_	-	-	7
5,5	-	-	-	-	-	-	-	7
7,5	-	-	-	-	-	-	-	2
3 x 200-240 V								
0,75	KTN-R10	JKS-10	JJN-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,1	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
1,5	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
2,2	KIN-R20	JKS-20	JJN-20	5017906-020	KIN-R20	ATM-R20	A2K-20R	10
3	KIN-R30	JKS-30	JJN-30	5012406-032	KIN-R30	ATM-R30	A2K-30R	10
3,7	KIN-R30	JKS-30	JJN-30	5012406-032	KIN-R30	ATM-R30	A2K-30R	10
5,5	KIN-R50	JKS-50	JJN-50	5012406-050	KLN-R50	-	A2K-50R	7
7,5	KTN R60	JKS-60	JJIN-60	5012406-050	KLIN-ROU		AZK-SUK	7
11	KTN P80	JKS-60		5014006-083		A2K-OUR	A2K-00R	1
19.5	KTN P125	JKS-60	JJIN-00	2028220 125	KLN P125	A2K-00K	A2K-00K	2
22	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
30	FWX-150		-	2028220-120	1258-150	A213-1251	A213-1251	1/0
37	FWX-200	_	_	2028220-200	1258-200	A25X-200	A25X-200	4/0
45	FWX-250	_	_	2028220-250	L25S-250	A25X-250	A25X-250	250 MCM
3 x 380-500 V								
0.55	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
0,75	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,1	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1,5	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
2,2	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
11	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
15	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
18,5	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	-	A6K-50R	7
22	KTS-R60	JKS-60	JJS-60	5014006-063	KLS-R60	-	A6K-60R	2
30	KIS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	-	A6K-80R	2
37	KTS-R100	JKS-100	JJS-100	2028220-125	KLS-R100	-	A6K-100R	1/0
45	KTS-R125	JKS-150	JJS-150	2028220-125	KLS-R125	-	A6K-125R	1/0
55	KIS-R150	JKS-150	JJS-150	2028220-160	KLS-R150	-	A6K-15UR	1/0
75	FWH-220	_	_	2028220-200	L505-225	-	A50-P225	4/U
3 x 525-600 V	1 001-230	_	_	2020220-230	L303-230	-	AJ0-F2J0	230 1010101
0.75	KTS-R10	JKS-10	.LIS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.1	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.5	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
2,2	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3 x 525-690 V								
11	KTS-R-25	JKS-25	JJS-25	5017906-025	KLSR025	HST25	A6K-25R	1/0
15	KTS-R-30	JKS-30	JJS-30	5017906-030	KLSR030	HST30	A6K-30R	1/0
18,5	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
22	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
30	KTS-R-60	JKS-60	JJS-60	5014006-063	KLSR060	HST60	A6K-60R	1/0
37	KTS-R-80	JKS-80	JJS-80	5014006-080	KLSR075	HST80	A6K-80R	1/0
45	KTS-R-90	JKS-90	JJS-90	5014006-100	KLSR090	HST90	A6K-90R	1/0
55	KTS-R-100	JKS-100	JJS-100	5014006-100	KLSR100	HST100	A6K-100R	1/0
/5	KIS-R125	JKS-125	JJS-125	2028220-125	KLS-125	HS1125	A6K-125K	1/0
90	KIS-R150	JKS-150	JJS-150	2028220-150	KLS-150	HS1150	A6K-150R	1/0

Câble de moteur blindé, câble d'alimentation non blindé.
 American Wire Gauge.

16.7 Entrées et sorties

16.7.1 Alimentation réseau (L1, L2, L3)

Tension d'alimentation	200-240 V ± 10 %
Tension d'alimentation	380-500 V ± 10 %
Tension d'alimentation	525-600 V ± 10 %
Tension d'alimentation	525-690 V ± 10 %
Fréquence d'alimentation	50/60 Hz
Déséquilibre temporaire max. entre les phases	3 % de la valeur nominale
Courant de fuite à la terre	> 3,5 mA
Nombre de coupures int., boîtier A	Max. 2 fois/min.
Nombre de coupures int., boîtiers B et C	Max. 1 fois/min.

Nota Ne pas utiliser l'alimentation secteur pour mettre le CUE sous/hors tension.

16.7.2 Sortie moteur (U, V, W)

Tension de sortie	0-100 % ¹⁾
Fréquence de sortie	0-100 Hz ²⁾
Mise sous tension sortie	Non conseillé

¹⁾ Tension de sortie en % de la tension d'alimentation.

2) Selon la famille de pompe sélectionnée.

16.7.3 Branchement RS-485 GENIbus

Numéro de borne	68 (A), 69 (B), 61 GND (Y)

Le circuit RS-485 est fonctionnellement séparé des autres circuits centraux et galvaniquement séparé de la tension d'alimentation (PELV).

16.7.4 Entrées numériques

Numéro de borne	18, 19, 32, 33
Niveau de tension	0-24 VDC
Niveau de tension, contact ouvert	> 19 VDC
· · · · · · · · · · · · · · · · · · ·	
Niveau de tension, contact fermé	< 14 VDC
Tension max, sur entrée	28 \/DC
Tension max. Sur entitee	20 000
Résistance entrée, R _i	Env. 4 kΩ
rteeletariee entree, rt	E114: 11(35

Toutes les entrées numériques sont galvaniquement séparées de la tension d'alimentation (PELV) et des autres bornes haute tension.

16.7.5 Relais signaux

Relais 01, numéro terminal	1 (C), 2 (NO), 3 (NC)
Relais 02, numéro terminal	4 (C), 5 (NO), 6 (NC)
Charge borne max. (AC-1) ¹⁾	240 VAC, 2 A
Charge borne max. (AC-15) ¹⁾	240 VAC, 0,2 A
Charge borne max. (DC-1) ¹⁾	50 VDC, 1 A
Charge borne max	24 V DC 10 mA
	24 V AC 20 mA

1) IEC 60947, pièces 4 et 5.

- C = Commune
- NO = Normalement ouvert

NC = Normalement fermé

Les contacts relais sont galvaniquement séparés des autres circuits par une isolation renforcée (PELV).

16.7.6 Entrées analogiques

Entrée analogique 1, numéro de borne	53
Signal de tension	A53 = "U" ¹⁾
Plage de tension	0-10 V
Résistance entrée, R _i	Env. 10 kΩ
Tension max.	± 20 V
Signal courant	A53 = "I" ¹⁾
Plage de courant	0-20, 4-20 mA
Résistance entrée, R _i	Env. 200 Ω
Courant max.	30 mA
Défaut max., bornes 53, 54	0,5 % de l'échelle complète
Entrée analogique 2, numéro de borne	54
Signal courant	A54 = "I" ¹⁾
Plage de courant	0-20, 4-20 mA
Résistance entrée, R _i	Env. 200 Ω
Courant max.	30 mA
Défaut max., bornes 53, 54	0,5 % de l'échelle complète

¹⁾ Le réglage usine est le signal de tension "U".

Toutes les entrées analogiques sont galvaniquement séparées de la tension d'alimentation (PELV) et des autres bornes haute tension.

16.7.7 Sortie analogique

Entrée analogique 1, numéro de borne	42
Plage de courant	0-20 mA
Charge max. à la terre	500 Ω
Défaut max.	0,8 % de l'échelle complète

La sortie analogique est galvaniquement séparée de la tension d'alimentation (PELV) et des autres bornes à haute tension.

16.7.8 Module d'entrée capteur MCB 114

Entrée analogique 3, numéro de borne	2
Plage de courant	0/4-20 mA
Résistance entrée	< 200 Ω
Entrées analogiques 4 et 5, numéro de borne	4, 5 et 7, 8
Type de signal, 2 ou 3 fils	Pt100/Pt1000

 Nota
 Lors de l'utilisation d'un Pt100 avec un câble à

 3 fils, la résistance ne doit pas dépasser 30 Ω.

16.8 Niveau de pression sonore

Le niveau sonore du CUE est de 70 dB(A) max.

Le niveau de pression sonore d'un moteur régulé par un convertisseur de fréquence peut être plus élevé qu'un moteur correspondant non régulé par un convertisseur de fréquence. Voir paragr. *6.7 Filtres RFI*.

17. Mise au rebut

Ce produit ou des parties de celui-ci doit être mis au rebut tout en préservant l'environnement :

- 1. Utiliser le service local public ou privé de collecte des déchets.
- 2. Si ce n'est pas possible, envoyer ce produit à Grundfos ou au réparateur agréé Grundfos le plus proche.

GARANTIA LIMITADA

Los productos fabricados por GRUNDFOS PUMPS CORPORATION (Grundfos) se garantizan solamente al usuario original de estar libres de defectos en sus materiales y en su mano de obra por un período de 24 meses a partir de la fecha de instalación, pero no más de 30 meses a partir de la fecha de fabricación. La responsabilidad legal de Grundfos que cubre esta garantía se limitará a reparar o reemplazar a opción de Grundfos, sin cargo, LAB fábrica Grundfos o estación de servicio autorizado, cualquier producto manufacturado por Grundfos. Grundfos no se hará responsable de ningún costo de remoción, instalación, transporte o cualquier otro cargo que pueda surgir en relación con un reclamo de garantía.

Los productos vendidos pero no manufacturados por Grundfos están sujetos a la garantía proporcionada por el fabricante de dichos productos y no por la garantía de Grundfos. Grundfos no será responsable por el daño o desgaste de productos provocado por condiciones de operación anormales, accidentes, abuso, maltrato, alteraciones o reparaciones no autorizadas, o si el producto no fue instalado de acuerdo con el instructivo de instalación y operación impreso de Grundfos.

Para obtener el servicio que cubre esta garantía, el producto defectuoso debe regresarse al distribuidor de productos Grundfos a quien se compró junto con la prueba de compra y fecha de instalación, fecha de falla y datos de instalación.

El distribuidor se pondrá en contacto con Grundfos o con una estación de servicio autorizada para instrucciones. Cualquier producto defectuoso regresado a Grundfos o a una estación de servicio autorizada, deberá ser enviado prepagado; con documentación que apoye el reclamo de garantía y se debe incluir, si así se pide, una Autorización de Devolución de Material.

GRUNDFOS NO SERA RESPONSABLE DE NINGUN DAÑO, PERDIDA O GASTO SECUNDARIO QUE SURJA COMO CONSECUENCIA DE LA INSTALACION, USO, NI DE NINGUNA OTRA CAUSA. NO HAY GARANTIAS EXPLICITAS O IMPLICITAS, INCLU-YENDO LA COMERCIAL PARA UN PROPOSITO PARTICULAR, QUE SE EXTIENDA MAS ALLA DE LAS GARANTIAS DESCRITAS O REFERIDAS ARRIBA.

Algunas autoridades no permiten la exclusión o limitación de daños secundarios o resultantes y algunas autoridades no permiten limitar acciones en la duración de las garantías implicadas. Por lo tanto, las limitaciones o exclusiones de arriba pueden no aplicar. Esta garantía confiere derechos legales específicos, usted puede contar otros derechos que varían de un lugar a otro.

CONTENIDO

	Pá	igina
1.	Símbolos utilizados en este documento	94
2.	Introducción	94
2.1	Descripción general	94
2.2	Aplicaciones	94
2.3	Referencias	95
3.	Seguridad y avisos	95
3.1	Aviso	95
3.2	Normativa de seguridad	95
3.3	Condiciones técnicas para el montaje	95
3.4	Rendimiento reducido en ciertas condiciones	95
4.	Identificación	96
4.1	Placa de características	96
4.2	Etiqueta de embalaje	96
5.	Instalación mecánica	96
5.1	Recepción y almacenamiento	96
5.2	Transporte y desembalaje	96
5.3	Requisitos de espacio y circulación de aire	96
5.4	Montaje	97
6.	Conexión eléctrica	97
6.1	Protección eléctrica	97
6.2	Conexión de motor y red	97
6.3	Conexión de los terminales de señal	102
6.4	Conexión de los relés de señal	104
6.5	Conexión del módulo de entrada de sensor MCB 114	105
6.6	Instalación EMC correcta	106
6.7	Filtros RFI	106
6.8	Filtros de salida	106
7.	Modos de funcionamiento	107
8.	Modos de control	107
8.1	Funcionamiento no controlado (bucle abierto)	107
8.2	Funcionamiento controlado (bucle cerrado)	108
9.	Resumen de menús	109
10.	Ajustes mediante el panel de control	112
10.1	Panel de control	112
10.2	Recuperación del ajuste de fábrica	112
10.3	Guía de puesta en marcha	113
10.4	Menú GENERAL	117
10.5	Menú FUNCIONAMIENTO	117
10.6	Menú ESTADO	119
10.7	Menú INSTALACION	121
11.	Ajuste mediante productos E PC Tool	127
12.	Prioridad de ajustes	128
12.1	Control sin señal de bus, modo de funcionamiento	
	local	128
12.2	Control con señal de bus, modo de funcionamiento	
	por control remoto	128
13.	Señales de control externas	128
13.1	Entradas digitales	128
13.2	Punto de ajuste externo	128
13.3	Señal GENIbus	129
13.4	Otros estándares de bus	129
14.	Mantenimiento y reparación	129
14.1	Limpieza del CUE	129
14.2	Repuestos y kits de mantenimiento	129
15.	Localización de fallos	130
15.1	Lista de avisos y alarmas	130
15.2	Reseteo de alarmas	130
15.3	Luces testigo	131
15.4	Relés de señal	131

16.	Datos técnicos	132
16.1	Carcasa	132
16.2	Dimensiones principales y peso	133
16.3	Entorno	134
16.4	Pares de apriete del terminal	134
16.5	Longitud de cable	134
16.6	Fusibles y sección transversal de cable 13	
16.7	Entradas y salidas	137
16.8	Nivel de ruido	137
17.	Eliminación	138

Aviso

Leer estas instrucciones de instalación y funcionamiento antes de realizar la instalación. La instalación y el funcionamiento deben cumplir con las normativas locales en vigor.

1. Símbolos utilizados en este documento

Aviso

Precaución

¡Si estas instrucciones no son observadas puede tener como resultado daños personales!

¡Si estas instrucciones de seguridad no son observadas puede tener como resultado daños para los equipos!

Notas o instrucciones que hacen el trabajo más sencillo garantizando un funcionamiento seguro.

2. Introducción

Este manual presenta todos los aspectos de su convertidor de frecuencia CUE de Grundfos en el intervalo de intensidad de salida de 1,8 a 177 A.

Mantener siempre este manual cerca del CUE.

2.1 Descripción general

El CUE es una serie de convertidores de frecuencia externos especialmente diseñados para bombas.

Gracias a la guía de puesta en marcha del CUE, el instalador puede ajustar rápidamente los parámetros centrales y poner el CUE en funcionamiento.

Conectado a un sensor o a una señal de control externa, el CUE adaptará rápidamente la velocidad de la bomba a la demanda actual.

2.2 Aplicaciones

La serie CUE y las bombas estándar de Grundfos son un complemento a la gama de bombas E de Grundfos con convertidor de frecuencia integrado.

Una solución CUE ofrece la misma funcionalidad que las bombas ${\sf E}$

- en la tensión de red o intervalos de potencia que no cubre la gama de bombas E.
- en aplicaciones en las que no sea conveniente o admisible un convertidor de frecuencia integrado.

2.3 Referencias

Documentación técnica para CUE de Grundfos:

- El manual contiene toda la información necesaria para poner el CUE en funcionamiento.
- El cuadernillo de datos contiene toda la información técnica sobre la construcción y aplicaciones del CUE.
- Las instrucciones de mantenimiento contienen todas las instrucciones necesarias para desmontar y reparar el convertidor de frecuencia.

La documentación técnica se encuentra disponible en www.grundfos.com > Sitio web internacional > WebCAPS. Para cualquier pregunta, por favor póngase en contacto con la compañía Grundfos o el taller más cercano.

3. Seguridad y avisos

3.1 Aviso

Aviso

Cualquier instalación, mantenimiento o revisión debe ser realizada por personal cualificado.

Aviso

Tocar las piezas eléctricas puede resultar letal, incluso después de que se haya desconectado el CUE.

Antes de llevar a cabo cualquier tarea sobre el CUE, el suministro de red y otras tensiones de entrada deben desconectarse al menos durante el tiempo que se indica a continuación.

Tensión	Tiempo de espera mín.		
	4 minutos	15 minutos	20 minutos
200-240 V	1 a 5 CV	7,5 a 60 CV	
380-500 V	0,75 a 10 CV	15 a 125 CV	
525-600 V	1 a 10 CV		
525-690 V			15 a 125 CV

Sólo se podrá esperar menos tiempo si así lo indica la placa de características del CUE en cuestión.

3.2 Normativa de seguridad

- El botón on/off del panel de control no desconecta el CUE de la tensión de red y por lo tanto no debe utilizarse como interruptor de seguridad.
- El CUE debe estar conectado a tierra correctamente y protegido contra contacto indirecto de acuerdo con la normativa nacional.
- La corriente de fuga a tierra supera los 3,5 mA.
- La carcasa con grado de protección NEMA 1 no debe instalarse de modo que sea libremente accesible, sino únicamente en un panel.
- La carcasa con grado de protección NEMA 12 no debe instalarse al aire libre sin protección adicional contra el agua y el sol.
- Respetar siempre las normativas nacionales y locales en lo referente a sección transversal de cables, protección contra cortocircuitos y protección contra sobreintensidad.

3.3 Condiciones técnicas para el montaje

La seguridad general necesita consideraciones especiales en lo referente a estos aspectos:

- fusibles e interruptores para protección contra sobreintensidad y cortocircuito
- selección de cables (intensidad de red, motor, distribución de carga y relé)
- configuración de red (IT, TN, conexión a tierra)
- seguridad para conectar entradas y salidas (PELV).

3.3.1 Red IT

No conectar convertidores de frecuencia CUE de 380-500 V a redes eléctricas con una tensión entre fase y tierra de más de 440 V.

Con respecto a la red IT y la red delta conectada a tierra, la tensión de red puede superar los 440 V entre fase y tierra.

3.3.2 Entorno agresivo

Aviso

El CUE no debe instalarse en un entorno cuyo aire contenga líquidos, partículas o gases que puedan afectar y dañar los componentes electrónicos

El CUE contiene un gran número de componentes mecánicos y electrónicos. Todos son vulnerables a los efectos medioambientales.

3.4 Rendimiento reducido en ciertas condiciones

El CUE reducirá su rendimiento en estas condiciones:

- baja presión del aire (a gran altitud)
- cables de motor largos.

Aviso

Las medidas necesarias se describen en las dos secciones siguientes.

3.4.1 Reducción a baja presión del aire

A altitudes superiores a los 2000 metros, no puede cumplirse la PELV.

PELV = Protective Extra Low Voltage (tensión de seguridad). A baja presión del aire, se reduce la capacidad de refrigeración del aire, y el CUE reduce automáticamente el rendimiento para evitar sobrecargas.

Puede ser necesario seleccionar un CUE con un rendimiento más alto.

3.4.2 Reducción por cables de motor largos

La longitud máxima de cable para el CUE es de 300 metros para cables no apantallados y de 150 metros para cables apantallados. Si los cables son más largos, contactar con Grundfos.

El CUE está diseñado para un cable de motor con una sección transversal máxima, como se indica en la sección 16.6 Fusibles y sección transversal de cable.

95

4. Identificación

4.1 Placa de características

El CUE puede identificarse mediante la placa de características. A continuación se muestra un ejemplo.

Fig. 1 Ejemplo de placa de características

Texto	Descripción	
T/C:	CUE (nombre de producto) 202P1M2 (código interno)	
Prod. no:	Código: 12345678	
S/N:	Número de serie: 123456G234 Los tres últimos dígitos indican la fecha de fabricación: 23 es la semana, y 4 es el año 2004.	
1,5 kW	Potencia típica del eje en el motor	
IN:	Tensión de alimentación, frecuencia e intensidad de entrada máxima	
OUT:	Tensión del motor, frecuencia e intensidad máxima de salida. La frecuencia de salida máxima normalmente depende del tipo de bomba.	
CHASSIS/IP20	Grado de protección	
Tamb.	Temperatura ambiente máxima	

4.2 Etiqueta de embalaje

El CUE también puede identificarse por medio de la etiqueta del embalaje.

5. Instalación mecánica

Los tamaños de cuadros individuales del CUE se caracterizan por sus carcasas. La tabla de la sección *16.1* muestra la relación entre el grado de protección y el tipo de carcasa.

5.1 Recepción y almacenamiento

Comprobar en el momento de la recepción que el embalaje está intacto, y que la unidad está completa. En caso de daños durante el transporte, contactar con la compañía de transporte para reclamar.

Hay que tener en cuenta que el CUE se entrega en un embalaje que no es adecuado para almacenamiento al aire libre.

5.2 Transporte y desembalaje

El CUE sólo debe desembalarse en el lugar de instalación para evitar daños durante el transporte al mismo.

El embalaje contiene bolsa(s) de accesorios, documentación y la unidad propiamente dicha. Ver fig. 2.

Fig. 2 Embalaje del CUE

TM04 3272 3808

5.3 Requisitos de espacio y circulación de aire

Las unidades CUE pueden montarse una al lado de la otra pero, ya que se necesita una circulación de aire suficiente para refrigerar, deben cumplirse los siguientes requisitos:

- Suficiente espacio libre por encima y por debajo del CUE. Ver la siguiente tabla.
- Temperatura ambiente hasta 50 °C.
- Colgar el CUE directamente en la pared, o fijarlo con una placa posterior. Ver fig. 3.

Fig. 3 CUE colgado directamente en la pared o fijado con una placa posterior

Espacio libre necesario por encima y por debajo del CUE

Espacio [pulgadas]
3,9
7,9
8,9

Para información sobre la carcasa, ver la tabla de la sección 16.1.

5.4 Montaje

Precaución El usuario es responsable de montar con firmeza el CUE sobre una superficie sólida.

- 1. Marcar y perforar orificios. Ver las dimensiones en la sección 16.2.
- 2. Colocar los tornillos, pero dejarlos sueltos. Montar el CUE, y apretar los cuatro tornillos.

Fig. 4 Perforación de orificios

6. Conexión eléctrica

Aviso

El propietario o instalador es el responsable de asegurar la correcta conexión a tierra y protección de acuerdo con las normas nacionales y locales.

Aviso

Antes de llevar a cabo cualquier trabajo en el CUE, el suministro de red y otras entradas de tensión deben desconectarse durante al menos el tiempo indicado en la sección 3. Seguridad y avisos.

Fig. 5 Ejemplo de conexión a red trifásica del CUE con interruptor de red, fusibles de reserva y protección adicional

6.1 Protección eléctrica

6.1.1 Protección contra sacudida eléctrica, contacto indirecto

Aviso

El CUE debe estar correctamente conectado a tierra y protegido contra contacto indirecto de acuerdo con las normativas nacionales.

La corriente de fuga a tierra supera los 3,5 mA, y se necesita una conexión a tierra reforzada.

Los conductores de protección siempre deben tener una marca de color amarillo/verde (PE) o amarillo/verde/azul (PEN).

Instrucciones de acuerdo con EN IEC 61800-5-1:

- El CUE debe estar inmóvil, instalado y conectado permanentemente al suministro de red.
- La conexión a tierra debe realizarse con conductores de protección duplicados o con un solo conductor de protección reforzado con una sección transversal de, como mínimo, 8 AWG.

6.1.2 Protección contra cortocircuitos, fusibles

El CUE y el sistema de alimentación deben estar protegidos contra cortocircuitos.

Grundfos exige que los fusibles de reserva mencionados en la sección *16.6* se utilicen para protección contra cortocircuitos.

El CUE ofrece protección contra cortocircuitos completa en caso de cortocircuito en la salida del motor.

6.1.3 Protección adicional

Precaución La corriente de fuga a tierra supera los 3,5 mA.

Si el CUE está conectado a una instalación eléctrica donde se utiliza un diferencial a tierra (ELCB) como protección adicional, éste debe estar marcado con los siguientes símbolos:

Este diferencial es de tipo B.

Hay que tener en cuenta la corriente de fuga total de todo el equipo eléctrico de la instalación.

La corriente de fuga del CUE en funcionamiento normal puede verse en la sección 16.7.1 *Suministro de red (L1, L2, L3).* Durante el arranque y en sistemas de alimentación asimétrica, la corriente de fuga puede ser superior a la normal y puede hacer que el ELCB se desconecte.

6.1.4 Protección de motor

El motor no necesita protección externa de motor. El CUE protege al motor contra sobrecarga térmica y bloqueo.

6.1.5 Protección contra sobreintensidad

El CUE tiene una protección contra sobreintensidad interna para protección contra sobrecarga en la salida del motor.

6.1.6 Protección contra transitorios de voltaje de la red

El CUE está protegido contra transitorios de voltaje de la red de acuerdo con EN 61800-3, segundo entorno.

6.2 Conexión de motor y red

La tensión y la frecuencia de alimentación están indicadas en la placa de características del CUE. Comprobar que el CUE es adecuado para el suministro eléctrico del lugar de la instalación.

El voltaje máximo de salida del CUE es igual al voltaje de entrada.

Ejemplo: Si el voltaje de alimentación es de 208 V, elegir 208 V nominal de motor.

6.2.1 Interruptor de red

Puede instalarse un interruptor de red antes del CUE de acuerdo con la normativa local. Ver fig. 5.

6.2.2 Esquema de conexiones eléctricas

Los cables de la caja de terminales deben ser lo más cortos posible. Exceptuado de esta norma queda el conductor de protección, que debe ser tan largo que sea el último en ser desconectado en caso de que el cable sea extraído accidentalmente de la entrada de cable.

Fig. 6 Esquema de conexiones eléctricas, conexión a la red trifásica

Termin	al	Función
91	(L1)	
92	(L2)	Suministro trifásico
93	(L3)	-
95/99	(PE)	Conexión a tierra
96	(U)	
97	(V)	Conexion del motor tritasica, 0-100 % de la tensión de red
98	(W)	

Para conexión monofásica, utilizar L1 y L2: Para determinar la sección transversal del conductor de entrada en una alimentación monofásica, multiplicar la corriente máxima de salida del CUE por dos, y seleccionar la sección transversal adecuada basada en dicho ampérage.

Para alimentación trifásica, utilizar la misma sección transversal del conductor que la seleccionada para el motor.

Para el cable del CUE al motor, utilizar las tablas trifásicas estándares de acuerdo al tamaño del motor.

6.2.3 Conexión a la red, carcasas A2 y A3

Para información sobre la carcasa, ver la tabla de la sección 16.1.

Comprobar que la tensión y la frecuencia de la Precaución red correspondan con los valores indicados en la placa de características del CUE y el motor.

1. Instalar la placa de montaje con dos tornillos.

Fig. 7 Instalación de la placa de montaje

 Conectar el conductor de tierra al terminal 95 (PE) y los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3) del enchufe de alimentación. Introducir el enchufe de alimentación en la toma con la marca MAINS.

Fig. 8 Conexión del conductor de tierra y los conductores de red

Nota Para conexión monofásica, utilizar L1 y L2.

Nota

3. Fijar el cable de alimentación a la placa de montaje.

Fig. 9 Fijación del cable de alimentación

6.2.4 Conexión de motor, carcasas A2 y A3

Para información sobre la carcasa, ver la tabla de la sección 16.1.

Precaución El ca

El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

 Conectar el conductor de tierra al terminal 99 (PE) de la placa de montaje. Conectar los conductores del motor a los terminales 96 (U), 97 (V), 98 (W) del enchufe del motor.

Fig. 10 Conexión del conductor de tierra y los conductores del motor

 Introducir el enchufe del motor en la toma con la marca MOTOR. Fijar el cable apantallado a la placa de montaje con una abrazadera para cables.

M03 9012 2807

Fig. 11 Conexión del enchufe del motor y fijación del cable apantallado

FM03 9014 2807

Las pantallas de los cables deben estar conectados a tierra en ambos lados.

Nota La pantalla del cable debe ser expuesta y en contacto físico con la placa de montaje.

6.2.5 Carcasa A5

Para información sobre la carcasa, ver la tabla de la sección 16.1.

Conexión a la red

Comprobar que la tensión y la frecuencia de la n red correspondan con los valores indicados en la placa de características del CUE y el motor.

- 1. Conectar el conductor de tierra al terminal 95 (PE). Ver fig. 12.
- 2. Conectar los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3) del enchufe de alimentación.
- Introducir el enchufe de alimentación en la toma con la marca MAINS.
- 4. Fijar el cable de alimentación con una abrazadera para cables.

Fig. 12 Conexión a la red, A5

Nota Para conexión monofásica, utilizar L1 y L2.

TM03 9017 2807

Conexión de motor

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- 1. Conectar el conductor de tierra al terminal 99 (PE). Ver fig. 13.
- Conectar los conductores de motor a los terminales 96 (U), 97 (V), 98 (W) del enchufe del motor.
- Introducir el enchufe del motor en la toma con la marca MOTOR.
- 4. Fijar el cable apantallado con una abrazadera para cables.

Fig. 13 Conexión de motor, A5

Nota La pantalla del cable debe ser expuesta y en contacto físico con la placa de montaje.

6.2.6 Carcasas B1 y B2

Para información sobre la carcasa, ver la tabla de la sección 16.1.

Conexión a la red

Е

Comprobar que la tensión y la frecuencia de la Precaución red correspondan con los valores indicados en la placa de características del CUE y el motor.

- 1. Conectar el conductor de tierra al terminal 95 (PE). Ver fig. 14.
- 2. Conectar los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).
- 3. Fijar el cable de alimentación con una abrazadera para cables.

Fig. 14 Conexión a la red, B1 y B2

Nota Para conexión monofásica, utilizar L1 y L2.

Conexión de motor

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- 1. Conectar el conductor de tierra al terminal 99 (PE). Ver fig. 15.
- Conectar los conductores del motor a los terminales 96 (U), 97 (V), 98 (W).
- 3. Fijar el cable apantallado con una abrazadera para cables.

TM03 9020 2807

Fig. 15 Conexión de motor, B1 y B2

La pantalla del cable debe ser expuesta y Nota en contacto físico con la placa de montaje.

6.2.7 Carcasas B3 y B4

Para información sobre la carcasa, ver la tabla de la sección 16.1.

Conexión a la red

TM03 9018 2807

TM03 9019 2807

Comprobar que la tensión y la frecuencia de la red correspondan con los valores indicados en la placa de características del CUE y el motor.

- 1. Conectar el conductor de tierra al terminal 95 (PE). Ver fig. 16 y 17.
- 2. Conectar los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).
- 3. Fijar el cable de alimentación con una abrazadera para cables.

Conexión de motor

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- 1. Conectar el conductor de tierra al terminal 99 (PE). Ver fig. 16 y 17.
- Conectar los conductores del motor a los terminales 96 (U), 97 (V), 98 (W).
- 3. Fijar el cable apantallado con una abrazadera para cables.

Fig. 16 Conexión de motor y red, B3

Fig. 17 Conexión de motor y red, B4

La pantalla del cable debe ser expuesta y en contacto físico con la placa de montaje.

6.2.8 Carcasas C1 y C2

Para información sobre la carcasa, ver la tabla de la sección 16.1.

Conexión a la red

Precaución

TM03 9446 4007

FM03 9449 4007

Comprobar que la tensión y la frecuencia de la red correspondan con los valores indicados en la placa de características del CUE y el motor.

- 1. Conectar el conductor de tierra al terminal 95 (PE). Ver fig. 18.
- 2. Conectar los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).

Conexión de motor

Precaución El cable del motor debe estar apantallado para que el CUE cumpla los requisitos de EMC.

- 1. Conectar el conductor de tierra al terminal 99 (PE). Ver fig. 18.
- 2. Conectar los conductores del motor a los terminales 96 (U), 97 (V), 98 (W).
- 3. Fijar el cable apantallado con una abrazadera para cables.

TM03 9016 2807

Fig. 18 Conexión de motor y red, C1 y C2

en contacto físico con la placa de montaje.

6.2.9 Carcasas C3 y C4

Para información sobre la carcasa, ver la tabla de la sección 16.1.

Conexión a la red

Comprobar que la tensión y la frecuencia de la red correspondan con los valores indicados en la placa de características del CUE y el motor.

- 1. Conectar el conductor de tierra al terminal 95 (PE). Ver fig. 19 y 20.
- 2. Conectar los conductores de red a los terminales 91 (L1), 92 (L2), 93 (L3).

Conexión de motor

El cable del motor debe estar apantallado para Precaución que el CUE cumpla los requisitos de EMC.

- 1. Conectar el conductor de tierra al terminal 99 (PE). Ver fig. 19 y 20.
- 2. Conectar los conductores del motor a los terminales 96 (U), 97 (V), 98 (W).
- 3. Fijar el cable apantallado con una abrazadera para cables.

La pantalla del cable debe ser expuesta y

Fig. 19 Conexión de motor y red, C3

TM03 9447 4007

Fig. 20 Conexión de motor y red, C4

Nota

La pantalla del cable debe ser expuesta y en contacto físico con la placa de montaje.

6.3 Conexión de los terminales de señal

Como precaución, los cables de señal deben estar separados de otros grupos mediante aislamiento reforzado en toda su longitud.

Si no se conecta ningún interruptor on/off externo, puentear los terminales 18 y 20 con un cable corto.

Conectar los cables de señal de acuerdo con las directrices de buena práctica para asegurar la correcta instalación con respecto a EMC. Ver sección 6.6 Instalación EMC correcta.

- Utilizar cables de señal apantallados con una sección transversal del conductor de mín. 22 AWG y máx. 16 AWG.
- Utilizar un cable de bus apantallado de 3 conductores en sistemas nuevos.

6.3.1 Esquema de conexiones eléctricas, terminales de señal

Fig. 21 Esquema de conexiones eléctricas, terminales de señal

TM03 8800 2507

Terminal	Тіро	Función
12	+24 V salida	Suministro al sensor
13	+24 V salida	Suministro adicional
18	DI 1	Entrada digital, arranque/parada
19	DI 2	Entrada digital, programable
20	GND	Tierra para entradas digitales
32	DI 3	Entrada digital, programable
33	DI 4	Entrada digital, programable
39	GND	Tierra para salida analógica
42	AO 1	Salida analógica, 0-20 mA
50	+10 V salida	Suministro al potenciómetro
53	AL 1	Punto de ajuste externo,
00		0-10 V/ 0/4-20 mA
54	AI 2	Entrada de sensor, sensor 1,
		0/4-20 mA
55	GND	Tierra para entradas analógicas
61	RS-485 GND Y	GENIbus, GND
68	RS-485 A	GENIbus, señal A (+)
69	RS-485 B	GENIbus, señal B (-)

Los terminales 27, 29 y 37 no se utilizan.

Nota

La pantalla RS-485 debe estar conectada a tierra.

6.3.2 Conexión mínima, terminales de señal

El funcionamiento sólo es posible cuando están conectados los terminales 18 y 20, por ejemplo mediante un interruptor on/off externo o un cable corto.

Fig. 22 Conexión mínima necesaria, terminales de señal

6.3.3 Acceso a terminales de señal

Todos los terminales de señal están detrás de la cubierta del terminal de la parte frontal del CUE. Quitar la tapa del terminal como se muestra en las fig. 23 y 24.

Fig. 23 Acceso a terminales de señal, A2 y A3

Fig. 24 Acceso a terminales de señal, A5, B1, B2, B3, B4, C1, C2, C3 y C4

Е

Fig. 25 Terminales de señal (todas las carcasas)

6.3.4 Colocación del conductor

- 1. Quitar el aislamiento a una longitud de 0,34 a 0,39 pulgadas (9 a 10 mm).
- Insertar un destornillador con una punta de como máximo 0,015 x 0,1 pulgada (0,4 x 2,5 mm) en el orificio cuadrado.
- Insertar el conductor en el orificio redondo correspondiente. Extraer el destornillador. El conductor ahora está fijado en el terminal.

Fig. 26 Colocación del conductor en el terminal de señal

6.3.5 Ajuste de las entradas analógicas, terminales 53 y 54

Los contactos A53 y A54 se encuentran detrás del panel de control y se utilizan para ajustar el tipo de señal de las dos entradas analógicas.

El ajuste de fábrica de las entradas es la señal de tensión "U".

TM03 9003 2807

TM03 9004 2807

Si se conecta un sensor de 0/4-20 mA al terminal 54, la entrada debe ajustarse a la señal actual "I". Desactivar el suministro eléctrico antes de ajustar el A54.

Quitar el panel de control para ajustar el contacto. Ver fig. 27.

Fig. 27 Ajuste del contacto A54 a señal "I" actual

6.3.6 Conexión a la red GENIbus RS-485

Pueden conectarse una o más unidades CUE a una unidad de control mediante GENIbus. Ver el ejemplo en la fig. 28.

Fig. 28 Ejemplo de una red GENIbus RS-485

El potencial de referencia, GND, para la comunicación RS-485 (Y) debe estar conectado al terminal 61.

Si hay más de una unidad CUE conectada a una red GENIbus, el contacto de terminación de los CUEs en ambos extremos de la red debe ajustarse a "ON" (terminación del puerto RS-485). El ajuste de fábrica del contacto de terminación está en "OFF" (no terminado).

Extraer el panel de control para ajustar el contacto. Ver fig. 29.

Fig. 29 Ajuste del contacto de terminación a "ON"

6.4 Conexión de los relés de señal

Precaución

Е

Como medida de precaución, los cables de señal deben estar separados de otros grupos mediante aislamiento reforzado en toda su longitud.

Fig. 30 Terminales para relés de señal en estado normal (no activados)

Termi	Ferminal Función	
C 1	C 2	Común
NO 1	NO 2	Contacto normalmente abierto
NC 1 NC 2 Contacto normalmente cerrado		

Acceso a relés de señal

Las salidas de relé están colocadas como se muestra en las figs. 31 a 36.

Fig. 31 Terminales para conexión de relé, A2 y A3

Fig. 32 Terminales para conexión de relé, A5, B1 y B2

Fig. 33 Terminales para conexión de relé, C1 y C2

Fig. 34 Terminales para conexión de relé, B3

Fig. 35 Terminales para conexión de relé, B4

Fig. 36 Terminales para conexión de relé, C3 y C4, en la esquina superior derecha del CUE

6.5 Conexión del módulo de entrada de sensor MCB 114

El MCB 114 es una opción que ofrece entradas analógicas adicionales para el CUE.

6.5.1 Configuración del MCB 114

TM03 9009 2807

TM03 9442 4007

TM03 9441 4007

El MCB 114 está equipado con tres entradas analógicas para estos sensores:

- Un sensor adicional 0/4-20 mA. Ver sección 10.7.13 Sensor 2 (3.16).
- Dos sensores de temperatura Pt100/Pt1000 para medir la temperatura de los cojinetes del motor o una temperatura alternativa, como la temperatura del líquido. Ver secciones 10.7.18 Sensor de temperatura 1 (3.21) y 10.7.19 Sensor de temperatura 2 (3.22).

Cuando se haya instalado el MCB 114, el CUE detectará automáticamente si el sensor es Pt100 o Pt1000 cuando se active.

6.5.2 Esquema de conexiones eléctricas, MCB 114

Fig. 37 Esquema de conexiones eléctricas, MCB 114

TM04 3273 3908

Terminal	Тіро	Función
1 (VDO)	+24 V salida	Suministro al sensor
2 (I IN)	AI 3	Sensor 2, 0/4-20 mA
3 (GND)	GND	Tierra para entrada analógica
4 (TEMP) 5 (WIRE)	AI 4	Sensor de temperatura 1, Pt100/Pt1000
6 (GND)	GND	Tierra para sensor de temperatura 1
7 (TEMP) 8 (WIRE)	AI 5	Sensor de temperatura 2, Pt100/Pt1000
9 (GND)	GND	Tierra para sensor de temperatura 2

Los terminales 10, 11 y 12 no se utilizan.

6.6 Instalación EMC correcta

Esta sección ofrece directrices para una buena práctica cuando se instale el CUE. Es necesario seguir estas directrices para cumplir EN 61800-3, primer entorno.

- Utilizar sólo cables de señal y motor con una pantalla metálica trenzada en aplicaciones sin filtro de salida.
- No hay requisitos especiales para los cables de alimentación, aparte de los requisitos locales.
- Dejar la pantalla lo más cerca posible de los terminales de conexión. Ver fig. 38.
- Hay que evitar terminar la pantalla retorciendo los extremos. Ver fig. 39. Utilizar abrazaderas para cables o entradas para cable roscadas en su lugar.
- Conectar la pantalla a tierra en ambos extremos tanto para cables de señal como para cables de motor. Ver fig. 40.
 Si el controlador no tiene abrazaderas para cables, conectar sólo la pantalla al CUE. Ver fig. 41.
- Evitar cables de señal y motor sin apantallar en cuadros eléctricos con convertidores de frecuencia.
- Dejar el cable del motor lo más corto posible en aplicaciones sin filtro de salida para limitar el nivel de ruido y minimizar las corrientes de fuga.
- Los tornillos para conexiones a tierra siempre deben estar apretados, haya un cable conectado o no.
- Si es posible, mantener separados en la instalación los cables principales, los cables del motor y los cables de señal.

Otros métodos de instalación pueden dar resultados de EMC similares si se siguen las directrices anteriores para buena práctica.

Fig. 38 Ejemplo de cable pelado con pantalla

Fig. 39 No retorcer los extremos de la pantalla

Fig. 40 Ejemplo de conexión de un cable de bus de 3 conductores con pantalla conectada en ambos extremos

Fig. 41 Ejemplo de conexión de un cable de bus de 3 conductores con pantalla conectado en el CUE (controlador sin abrazaderas para cables)

6.7 Filtros RFI

Para cumplir los requisitos de EMC, el CUE viene con los siguientes tipos de filtro para interferencias de radiofrecuencia integrados (RFI):

Tensión	Potencia típica del eje P2	Tipo de filtro RFI
1 x 200-240 V*	1,5 a 10 CV	C1
3 x 200-240 V	1 a 60 CV	C1
3 x 380-500 V	0,75 a 125 CV	C1
3 x 525-600 V	1 a 10 CV	C3
3 x 525-690 V	15 a 125 CV	C3

* Entrada monofásica - salida trifásica.

Descripción de tipos de filtro RFI

C1: Para uso en zonas domésticas

C3: Para uso en zonas industriales con transformador de baja tensión propio

Los tipos de filtro RFI son conformes a EN 61800-3.

6.7.1 Equipo de categoría C3

- Este tipo de sistema de toma de fuerza (PDS) no está concebido para ser usado en una red pública de baja tensión que abastezca a edificios de viviendas.
- Deben esperarse radiointerferencias si se utiliza en una red de dicho tipo.

6.8 Filtros de salida

FM02 1325 0901

TM03 8812 2507

Los filtros de salida se utilizan para reducir la carga de tensión en los devanados del motor y la carga en el sistema de aislamiento del motor, así como para reducir el ruido acústico del motor accionado por convertidor de frecuencia.

Hay disponibles dos tipos de filtro de salida como accesorios para el CUE:

- Filtros dU/dt
- filtros de onda sinusoidal.

Uso de filtros de salida

Tipo de bomba	Potencia típica del eje P2	Filtro dU/dt [metros]	Filtro de onda sinusoidal [metros]
SP, BM, BMB con	Hasta 10 CV	-	0-300
motor 380 V y superior	De 15 CV en adelante	0-150	150-300
Otras hombas, baia	Hasta 10 CV	-	0-300
reducción de ruido	De 15 CV en adelante	0-150	150-300
Otras hombas, alta	Hasta 10 CV	-	0-300
reducción de ruido	De 15 CV en adelante	-	0-300
Bombas con motor de 690 V	Todas	-	0-300

Las longitudes indicadas se aplican al cable del motor. Las figuras 42 v 43 muestran instalaciones con v sin filtro v dónde utilizar cable apantallado y sin apantallar.

Fig. 42 Ejemplo de instalación sin filtro

Fig. 43 Ejemplo de instalación con filtro. El cable entre el CUE y el filtro debe ser corto.

Fig. 44 Bomba sumergible sin cuadro de conexiones. Convertidor de frecuencia y filtro instalados cerca del pozo.

- * Ambos extremos del cable apantallado entre el filtro y el cuadro de conexiones deben estar conectados a tierra.
- Fig. 45 Bomba sumergible con cuadro de conexiones y cable apantallado. Convertidor de frecuencia y filtro instalados cerca del pozo.

7. Modos de funcionamiento

Los siguientes modos de funcionamiento se ajustan en el panel de control en el menú FUNCIONAMIENTO, pantalla 1.2. Ver sección 10.5.2.

Modo de funcionamiento	Descripción
Normal	La bomba está funcionando en el modo de control seleccionado.
Parada	La bomba se ha parado (la luz testigo verde está parpadeando).
Mín.	La bomba está funcionando a velocidad mínima.
Máx.	La bomba está funcionando a velocidad máxima

Ejemplo: El funcionamiento en curva máxima puede utilizarse, por ejemplo, en conexión con la purga de la bomba durante la instalación.

Ejemplo: El funcionamiento en curva mín. puede utilizarse, por ejemplo, en periodos con una necesidad de caudal muy pequeña.

8. Modos de control

El modo de control se ajusta en el panel de control, en el menú INSTALACIÓN, pantalla 3.1. Ver sección 10.7.1.

Hay dos modos de control básicos:

- Funcionamiento no controlado (bucle abierto)
- Funcionamiento controlado (bucle cerrado) con un sensor conectado.

Ver secciones 8.1 y 8.2.

8.1 Funcionamiento no controlado (bucle abierto)

Ejemplo: El funcionamiento en curva constante puede utilizarse, por ejemplo, para bombas que no tengan ningún sensor conectado.

Ejemplo: Típicamente utilizado en conexión con un sistema de control global como el MPC u otro controlador externo.

8.2 Funcionamiento controlado (bucle cerrado)

108
9. Resumen de menús

Fig. 46 Resumen de menús

Estructura de menús

El CUE tiene una guía de puesta en marcha, que se inicia en el primer arranque. Después de la guía de puesta en marcha, el CUE tiene una estructura de menús dividida en cuatro menús principales:

- 1. **GENERAL** da acceso a la guía de puesta en marcha para el ajuste general del CUE.
- FUNCIONAMIENTO permite regular el punto de ajuste, seleccionar el modo de funcionamiento y resetear alarmas. También es posible ver los últimos cinco avisos y alarmas.
- 3. **ESTADO** muestra el estado del CUE y la bomba. No se pueden cambiar o ajustar los valores.
- 4. **INSTALACIÓN** da acceso a todos los parámetros. Aquí puede hacerse un ajuste detallado del CUE.

10. Ajustes mediante el panel de control

10.1 Panel de control

Aviso

El botón on/off del panel de control no desconecta el CUE del suministro eléctrico, y por lo tanto no debe utilizarse como interruptor de seguridad.

El botón on/off tiene la prioridad más alta. En condición "off", el funcionamiento de la bomba no es posible.

El panel de control se utiliza para el ajuste local del CUE. Las funciones disponibles dependen de la familia a la que pertenece la bomba conectada al CUE.

Fig. 47 Panel de control del CUE

Botones de edición

Botón	Función
On/ Off	Hace que la bomba esté lista para funcionar / arranca y para la bomba.
OK	Guarda los valores modificados, resetea las alarmas y amplía el campo de valores.
$\textcircled{\bullet}$	Cambia los valores en el campo de valores.

Botones de navegación

Botón	Función
	Navega de un menú a otro. Cuando se modifica el menú, la pantalla que se muestra siempre será la pantalla superior del nuevo menú.
ΛV	Navega hacia arriba y hacia abajo en el menú individual.

Los botones de edición del panel de control pueden ajustarse a estos valores:

- Activo
- No activo.

Cuando estén ajustados a *No activo*, los botones de edición no funcionarán. Sólo es posible navegar en los menús y leer valores.

Activar o desactivar los botones pulsando las flechas de arriba y abajo simultáneamente durante 3 segundos.

Ajuste del contraste de la pantalla

Pulsar OK y + para una pantalla más oscura.

Pulsar OK y - para una pantalla más luminosa.

Luces testigo

La condición de funcionamiento de la bomba se indica mediante las luces testigo en la parte frontal del panel de control de la bomba. Ver fig. 47.

La tabla muestra la función de las luces testigo.

Luz testigo	Función	
	La bomba está funcionando o se ha parado debido a una función de parada.	
Encendida (verde)	Si está parpadeando, la bomba ha sido parada por el usuario (menú del CUE), arranque/parada externos o bus.	
Apagada (naranja)	La bomba se ha parado con el botón on/off.	
Alarma (roja)	Indica una alarma o un aviso.	

Pantallas, términos generales

FM03 8719 2507

Las figuras 48 y 49 muestran los términos generales de la pantalla.

Fig. 48 Ejemplo de pantalla en la guía de puesta en marcha

Número de la pantalla, nombre de menú

Fig. 49 Ejemplo de pantalla en el menú de usuario

10.2 Recuperación del ajuste de fábrica

Ejecute este procedimiento para recuperar el ajuste de fábrica:

- 1. Desconecte el suministro eléctrico al CUE.
- 2. Pulse On/Off, OK y + cuando vuelva a conectar el suministro eléctrico.

El CUE restablecerá los valores de fábrica a todos los parámetros. La pantalla se encenderá cuando el reajuste se haya completado.

10.3 Guía de puesta en marcha

Nota

Comprobar que el equipo conectado está listo para el arranque, y que el CUE se ha conectado al suministro eléctrico.

Hay que tener a mano los datos de la placa de características para motor, bomba y CUE.

Utilizar la guía de puesta en marcha para el ajuste general del CUE, incluido el ajuste del sentido de giro correcto.

La guía de puesta en marcha se inicia la primera vez que el CUE se conecta a la tensión de alimentación. Puede reiniciarse en el menú GENERAL. Hay que tener en cuenta que en este caso se borrarán todos los ajustes anteriores.

Las listas con viñetas muestran los posibles ajustes. Los ajustes de fábrica se muestran **en negrita**.

10.3.1 Pantalla de bienvenida

Pulsar OK. Ahora será conducido por la guía de puesta en marcha.

Húngaro

Checo

Chino

Japonés

Coreano.

10.3.2 Idioma (1/16)

Seleccionar el idioma a utilizar en la pantalla:

•

Sueco

Danés

Polaco

Finlandés

- Inglés británico Griego
 - Inglés EE.UU. Holandés
- Alemán

٠

- Francés
- Italiano
- Español
- Portugués
 - Ruso

10.3.3 Unidades (2/16)

Seleccionar las unidades a utilizar en la pantalla:

- SI: m, kW, bar...
- US: ft, HP, psi...

10.3.4 Familia de la bomba (3/16)

Seleccionar la familia de la bomba de acuerdo con la placa de características de la bomba:

- CR, CRI, CRN, CRT
- SP, SP-G, SP-NE

• ...

Seleccionar "Otro" si la familia de bombas no se encuentra en la lista.

10.3.5 Potencia nominal del motor (4/16)

Ajustar la potencia nominal del motor, P2, de acuerdo con la placa de características del motor:

0,75 a 125 HP (0,55 a 90 kW).

La gama de ajuste está relacionada con el tamaño, y el ajuste de fábrica corresponde a la potencia nominal del CUE.

10.3.6 Tensión de alimentación (5/16)

Seleccionar la tensión de alimentación de acuerdo con la tensión de alimentación nominal del lugar de instalación.

Unidad	Unidad	Unidad
1 x 200-240 V:*	3 x 200-240 V:	3 x 380-500 V:
• 1 x 200 V	• 3 x 200 V	• 3 x 380 V
• 1 x 208 V	• 3 x 208 V	• 3 x 400 V
• 1 x 220 V	• 3 x 220 V	• 3 x 415 V
• 1 x 230 V	• 3 x 230 V	• 3 x 440 V
• 1 x 240 V.	• 3 x 240 V.	• 3 x 460 V
		• 3 x 500 V.
Unidad	Unidad	
3 x 525-600 V:	3 x 525-690 V:	
• 3 x 575 V.	• 3 x 575 V	
	• 3 x 690 V.	

* Entrada monofásica - salida trifásica.

La gama de ajuste depende del tipo de CUE, y el ajuste de fábrica corresponde a la tensión de alimentación nominal del CUE.

10.3.7 Corriente máxima del motor (6/16)

Placa de características d Intensidad máx. Imáx.			
8.00 A			
6/16 >			

Ajustar la corriente máxima del motor de acuerdo con la placa de características del motor:

• 0 a 999 A.

La gama de ajuste depende del tipo de CUE, y el ajuste de fábrica corresponde a una corriente de motor típica a la potencia de motor seleccionada.

10.3.8 Velocidad (7/16)

Ajustar la velocidad nominal de acuerdo con la placa de características de la bomba:

0 a 9999 rpm.

El ajuste de fábrica depende de las selecciones anteriores. En función de la velocidad nominal ajustada, el CUE ajustará automáticamente la frecuencia del motor a 50 o 60 Hz.

10.3.9 Frecuencia (7A/16)

Esta pantalla aparece sólo si se requiere la introducción manual de la frecuencia.

Ajustar la frecuencia de acuerdo con la placa de características del motor:

• 40 a 200 Hz.

El ajuste de fábrica depende de las selecciones anteriores.

10.3.10 Modo de control (8/16)

Seleccionar el modo de control deseado. Ver sección 10.7.1.

- Bucle abierto
- Presión const
- Presión dif. const.
- Presión dif. prop.
- Caudal const.
- Temperatura const.
- Nivel constante
- Otro valor const.

Los posibles ajustes y el ajuste de fábrica dependen de la familia de la bomba.

El CUE activará una alarma, si el modo de control seleccionado requiere un sensor y no se ha instalado ninguno. Para continuar el aiuste sin un sensor, seleccione "Bucle abierto" y proceda. Cuando se haya conectado un sensor, configure el sensor y el modo de control en el menú INSTALACIÓN.

10.3.11 Caudal nominal (8A/16)

Esta pantalla aparece sólo si el modo de control seleccionado es presión diferencial proporcional.

Aiustar el caudal nominal de acuerdo con la placa de características de la bomba:

1 a 28840 gpm (1 a 6550 m³/h).

10.3.12 Altura nominal (8B/16)

Placa d Altura	e características d.	
	90.0 m	
<	8B/16	>

Esta pantalla sólo aparece si el modo de control seleccionado es presión diferencial proporcional.

Ajustar la altura nominal de acuerdo con la placa de características de la bomba:

1 a 3277 pies (1 a 999 m).

10.3.13 Sensor conectado al terminal 54 (9/16)

Ajustar el intervalo de medida del sensor conectado con un intervalo de señal de 4-20 mA. El intervalo de medida depende del modo de control seleccionado:

Presión diferencial proporcional:	Presión diferencial constante:
• 0-6 metros	• 0-6 metros
• 0-10 metros	• 0-10 metros
• 0-16,5 metros	• 0-16,5 metros
• 0-25,6 metros	 0-25,6 metros
• 0-61 metros	• 0-61 metros
• 0-102 metros	• 0-102 metros
• Otra.	• Otra.
Presión constante:	Caudal constante:
• 0-58 psi	• Otro.
• 0-87 psi	
• 0-120 psi	
• 0-145 psi	
• 0-232 psi	
• 0-362 psi	
• 0-580 psi	
• 0-870 psi	
• Otra.	
Temperatura constante:	Nivel constante:
• Otra	• Otro

Si el modo de control seleccionado es "Otro valor const.", o si el intervalo de medida seleccionado es "Otro", el sensor debe ajustarse de acuerdo con la siguiente sección, pantalla 9A/16.

10.3.14 Otro sensor conectado al terminal 54 (9A/16)

Esta pantalla sólo aparece cuando se ha seleccionado el modo de control "Otro valor const." o el intervalo de medida "Otro" en la pantalla 9/16.

- Señal de salida del sensor: 0-20 mA
 4-20 mA
- Unidad de medida del sensor: bar, mbar, m, kPa, psi, ft, m³/h, m³/min, m³/s, l/h, l/min, l/s, gal/h, gal/m, gal/s, ft³/h, ft³/min, ft³/s, °C, °F, %.
- Gama de medida del sensor.

El intervalo de medida depende del sensor conectado y de la unidad de medida seleccionada.

10.3.15 Cebado y purga (10/16)

Ver las instrucciones de instalación y manejo de la bomba. El ajuste general del CUE ahora está terminado, y la guía de puesta en marcha está lista para ajustar el sentido de giro:

 Pulsar OK para continuar a ajuste automático o manual del sentido de giro.

10.3.16 Ajuste automático del sentido de giro (11/16)

Nota

Aviso

Durante la prueba, la bomba funcionará durante unos instantes. ¡Compruebe que no hay personal o equipos en peligro!

Antes de ajustar el sentido de giro, el CUE hará una adaptación automática del motor de ciertos tipos de bombas. Esto llevará unos minutos. La adaptación se realiza durante una parada.

El CUE automáticamente prueba y ajusta el sentido de giro correcto sin cambiar las conexiones de cable.

Esta prueba no es adecuada para ciertos tipos de bombas y en ciertos casos no podrá determinar con seguridad el sentido de giro correcto. En estos casos, el CUE cambia a ajuste manual, donde el sentido de giro se determina en función de las observaciones del instalador. Ahora el CUE hará una prueba de los parámetros del motor y comprobará si la bomba está girando en el sentido...

11/16

...correcto. Si no, el sentido de giro cambiará automáticamente. Comprobar...

11/16

E

...que el sistema está abierto para el caudal. La bomba estará funcionando durante la prueba. Pulsar OK para continuar.

11/16

Pantallas de información.

Pulsar OK para continuar.

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

La bomba funciona con ambos sentidos de giro y se para automáticamente.

Es posible interrumpir la prueba, parar la bomba e ir al ajuste manual del sentido de giro.

Se ha finalizado así el ajuste del sentido de giro correcto.

 Pulsar OK para fijar el punto de ajuste. Ver Punto de ajuste (15/16) en la página 115.

10.3.17 Punto de ajuste (15/16)

Fijar el punto de ajuste de acuerdo con el modo de control y el sensor seleccionados.

automáticamente si el sentido de giro es correcto. Pulsar OK para ir a prueba manual.

No se ha podido determinar

El ajuste automático del sentido de giro ha fallado.

13/16

• Pulsar OK para ir al ajuste manual del sentido de giro.

10.3.18 Los ajustes generales se han completado (16/16)

Pulsar OK para dejar la bomba lista para funcionar o arrancar la bomba en el modo de funcionamiento Normal. Entonces aparecerá la pantalla 1.1 del menú FUNCIONAMIENTO.

10.3.19 Ajuste manual cuando el sentido de giro es visible (13/16)

13/16

Debe ser posible observar el eje o ventilador del motor.

Pantallas de información

• Pulsar OK para continuar.

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

La presión será mostrada durante la prueba si el sensor de presión está conectado. El motor actual siempre se muestra durante la prueba.

Indicar si el sentido de giro es correcto.

correcto

Ver...

· Pulsar OK para repetir la

giro contrario.

prueba con el sentido de

…ésta funciona durante unos

13/16

segundos, primero en un

sentido y luego en el otro.

sentido de giro correcto.

en la página 115.

- Pulsar OK para fijar el punto de aiuste. Ver Punto de ajuste (15/16)
- 10.3.20 Ajuste manual cuando el sentido de giro no es visible (13/16)

Debe ser posible observar la altura o caudal.

Prueba de sentido de giro manual. Observar la altura/caudal de la bomba mientras

Pantallas de información.

Pulsar OK para continuar.

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

La presión será mostrada durante la prueba si el sensor de presión está conectado. El motor actual siempre se muestra durante la prueba.

La primera prueba está terminada.

 Anotar la presión y/o caudal, y pulsar OK para continuar la prueba manual con el sentido de giro contrario.

La bomba arranca después de 10 segundos.

Es posible interrumpir la prueba y volver a la pantalla anterior.

La presión será mostrada durante la prueba si el sensor de presión está conectado. El motor actual siempre se muestra durante la prueba.

La segunda prueba está terminada.

Anotar la presión y/o caudal, e indicar qué prueba dio el rendimiento de bomba más alto:

- Primera prueba
- Segunda prueba
- Hacer una nueva prueba.

Ha quedado ajustado el sentido de giro correcto.

• Pulsar OK para fijar el punto de ajuste. Ver *Punto de ajuste* (15/16) en la página 115.

10.4 Menú GENERAL

Nota

¡Si se inicia la guía de puesta en marcha, se borrarán todos los ajustes anteriores!

¡La guía de puesta en marcha debe realizarse en un motor frío!

La repetición de la guía de puesta en marcha puede producir el calentamiento del motor.

El menú permite volver a la guía de puesta en marcha, que normalmente sólo se utiliza durante el primer arranque del CUE.

10.4.1 Volver a la guía de puesta en marcha (0.1)

Indique su elección:

- Sí
- No

Si se selecciona *Sí*, se borrarán todos los ajustes, y deberá completarse toda la guía de puesta en marcha.

10.4.2 Cambio de código de tipo (0.2)

Esta pantalla es sólo para uso de mantenimiento.

10.4.3 Copia de ajustes

Es posible copiar los valores de ajuste de un CUE y volver a utilizarlos en otro.

- Opciones: • Sin copia.
- al CUE (copia los ajustes del CUE).
- al panel de control (copia los aiustes a otro CUE).

Las unidades CUE deben tener la misma versión de firmware. Ver la sección 10.6.16 Versión de firmware (2.16).

10.5 Menú FUNCIONAMIENTO

10.5.1 Punto de ajuste (1.1)

- Punto de ajuste fijado
- Punto de ajuste actual
- Valor actual

Fijar el punto de ajuste en unidades del sensor de retroalimentación.

En el modo de control **Bucle abierto**, el punto de ajuste se fija en % del rendimiento máximo. La gama de ajustes está entre las curvas mín. y máx. Ver fig. 56.

En **todos los demás** modos de control, excepto presión diferencial proporcional, el intervalo de ajuste es igual al intervalo de medida del sensor. Ver fig. 57.

En el modo de control de **Presión diferencial proporcional**, el intervalo de ajuste es igual al 25 % a 90 % de la altura máxima. Ver fig. 58.

Si la bomba está conectada a una señal externa del punto de ajuste, el punto de ajuste de esta pantalla será el valor máximo de la señal externa del punto de ajuste. Ver sección 13.2 Punto de ajuste externo.

Ε

10.5.2 Modo de funcionamiento (1.2)

Ajustar uno de los modos de funcionamiento siguientes:

- Normal (funcionamiento)
- Parada
- Mín.
- Máx

Pueden ajustarse los modos de funcionamiento sin cambiar el punto de ajuste.

10.5.3 Indicaciones de fallo

Los fallos pueden producir dos tipos de indicación: Alarma o aviso.

Una "alarma" activará una indicación de alarma en CUE y hará que la bomba cambie el modo de funcionamiento, típicamente a parada. Sin embargo, para algunos fallos que producen alarma, la bomba se ajusta para seguir funcionando incluso si hay una alarma.

Un "aviso" activará una indicación de aviso en CUE, pero la bomba no cambiará el modo de funcionamiento ni de control.

Alarma (1.3)

En caso de alarma, la causa aparecerá en esta pantalla. Ver sección 15.1 Lista de avisos y alarmas.

Aviso (1.4)

En caso de aviso, la causa aparecerá en esta pantalla. Ver sección *15.1 Lista de avisos y alarmas*.

10.5.4 Registro de fallos

Para ambos tipos de fallos, alarma y aviso, el CUE tiene una función de registro.

Registro de alarmas (1.5-1.9)

En caso de "alarma", aparecerán las cinco últimas indicaciones de alarma en el registro de alarma. "Registro de alarma 1" muestra la última alarma, "Registro de alarma 2" muestra la penúltima alarma, etc.

La pantalla muestra tres datos:

- la indicación de alarma
- el código de alarma
- los minutos que la bomba ha estado conectada al suministro eléctrico después de producirse la alarma.

Registro de avisos (1.10-1.14)

En caso de "aviso", las cinco últimas indicaciones de aviso aparecerán en el registro de avisos. "Reg. aviso 1" muestra el último fallo, "Reg. aviso 2" muestra el penúltimo fallo, etc.

La pantalla muestra tres datos:

- la indicación de aviso
- · el código de aviso
- los minutos que la bomba ha estado conectada al suministro eléctrico después de producirse el aviso.

10.6 Menú ESTADO

Las pantallas que aparecen en este menú son sólo pantallas de estado. No se pueden cambiar o ajustar los valores.

La tolerancia de los valores visualizados está indicada debajo de cada pantalla. Las tolerancias están indicadas como referencia en % de los valores máximos de los parámetros.

10.6.1 Punto de ajuste real (2.1)

Esta pantalla muestra el punto de ajuste real y el punto de ajuste externo.

El **punto de ajuste real** se muestra en unidades del sensor de retroalimentación.

El **punto de ajuste externo** se muestra en un intervalo de 0-100 %. Si la influencia del punto de ajuste externo está desactivada, se muestra el valor 100 %. Ver sección *13.2 Punto de ajuste externo*.

10.6.2 Modo de funcionamiento (2.2)

Esta pantalla muestra el modo de funcionamiento actual (*Normal*, *Parada*, *Mín.*, o *Máx.*). Muestra además dónde se eligió este modo de funcionamiento (*Menú del CUE*, *Bus*, *Externo* o *Botón on/off*).

10.6.3 Valor real (2.3)

Esta pantalla muestra el valor real controlado.

Si ningún sensor está conectado al CUE, "--" aparece en la pantalla.

10.6.4 Valor medido, sensor 1 (2.4)

Esta pantalla muestra el valor real medido por el sensor 1 conectado al terminal 54.

Si ningún sensor está conectado al CUE, "--" aparece en la pantalla.

10.6.5 Valor medido, sensor 2 (2.5)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

Esta pantalla muestra el punto de medición y el valor real medido por el sensor de temperatura Pt100/Pt1000 1 conectado al MCB 114.

Si ningún sensor está conectado al CUE, "--" aparece en la pantalla.

10.6.6 Velocidad (2.6)

Tolerancia: ± 5 %

Esta pantalla muestra la velocidad actual de la bomba.

10.6.7 Potencia de entrada e intensidad del motor (2.7)

Poter	ncia de entrada	4
	21.7 kW	[
Corri	iente de motor	ľ
	0.00 A	ا ر
¢	2.7 ESTADO	

Tolerancia: ± 10 %

Esta pantalla muestra la potencia de entrada real de la bomba en W o kW y la intensidad real del motor en Amperios [A].

10.6.8 Horas de funcionamiento y consumo de energía (2.8)

_		
He	oras de funcionamiento	> -⊊
	Oh	Ē
Co	onsumo de potencia	ľ
	2605 kWh	L,
Ċ	2.8 ESTADO	∎č
1.24		

Tolerancia: ± 2 %

Esta pantalla muestra el número de horas de funcionamiento y el consumo de energía. El valor de las horas de funcionamiento es un valor acumulado y no se puede restablecer. El valor del consumo de potencia es un valor acumulado calculado desde la primera puesta en marcha de bomba y no se puede restablecer. 10.6.9 Estado de lubricación de los rodamientos de motor (2.9)

Esta pantalla muestra cuántas veces ha dado el usuario la información de lubricación y cuándo sustituir los rodamientos del motor.

Cuando se hayan vuelto a lubricar los rodamientos de motor, confirmar esta acción en el menú INSTALACIÓN. Ver sección 10.7.17 Confirmación de la lubricación/sustitución de los rodamientos del motor (3.20). Cuando se confirme la lubricación, la cifra de la pantalla de arriba aumentará en uno.

10.6.10 Tiempo hasta nueva lubricación de los rodamientos de motor (2.10)

Esta pantalla sólo se muestra si no se muestra la pantalla 2.11. Esta pantalla muestra cuándo volver a lubricar los rodamientos de motor. El controlador vigila el patrón de funcionamiento de la bomba y calcula el periodo entre las lubricaciones de los rodamientos. Si cambia el patrón de funcionamiento, el tiempo calculado hasta la lubricación también puede cambiar.

El tiempo estimado hasta nueva lubricación tiene en cuenta si la bomba ha estado funcionando con velocidad reducida.

Ver sección 10.7.17 Confirmación de la lubricación/sustitución de los rodamientos del motor (3.20).

10.6.11 Tiempo hasta la sustitución de los rodamientos de motor (2.11)

Esta pantalla sólo se muestra si no se muestra la pantalla 2.10. Esta pantalla muestra cuándo sustituir los rodamientos de motor. El controlador vigila el patrón de funcionamiento de la bomba y calcula el periodo entre las sustituciones de los rodamientos.

El tiempo estimado hasta la sustitución de los rodamientos del motor tiene en cuenta si la bomba ha estado funcionando con velocidad reducida.

Ver sección 10.7.17 Confirmación de la lubricación/sustitución de los rodamientos del motor (3.20).

10.6.12 Sensor de temperatura 1 (2.12)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

Esta pantalla muestra el punto de medición y el valor real medido por el sensor de temperatura Pt100/Pt1000 1 conectado al MCB 114. El punto de medición se selecciona en la pantalla 3.21. Si ningún sensor está conectado al CUE, "-" aparece en la pantalla.

10.6.13 Sensor de temperatura 2 (2.13)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

Esta pantalla muestra el punto de medición y el valor real medido por el sensor de temperatura Pt100/Pt1000 2 conectado al MCB 114. El punto de medición se selecciona en la pantalla 3.22. Si ningún sensor está conectado al CUE, "-" aparece en la pantalla.

10.6.14 Caudal (2.14)

Esta pantalla sólo se muestra si se ha configurado un caudalímetro.

Esta pantalla muestra el valor real medido por un caudalímetro conectado a la entrada de impulsos digital (terminal 33) o a la entrada analógica (terminal 54).

10.6.15 Caudal acumulado (2.15)

Esta pantalla sólo se muestra si se ha configurado un caudalímetro.

Esta pantalla muestra el valor del caudal acumulado y la energía específica para la transferencia del líquido bombeado.

La medida del caudal puede conectarse a la entrada de impulsos digital (terminal 33) o a la entrada analógica (terminal 54).

10.6.16 Versión de firmware (2.16)

Esta pantalla muestra la versión actual del software.

10.6.17 Archivo de configuración (2.17)

Esta pantalla muestra el archivo de configuración actual.

10.7 Menú INSTALACIÓN

10.7.1 Modo de control (3.1)

Seleccionar uno de los modos de control siguientes:

- Bucle abierto
- Presión const.
- Presión dif. const.
- Presión dif. prop.
- Caudal const.
- Temperatura const.
- Nivel constante
- Otro valor const.

Nota

Si la bomba está conectada a un bus, no se puede seleccionar el modo de control a través del CUE. Ver sección 13.3 Señal GENIbus.

10.7.2 Controlador (3.2)

El CUE tiene un ajuste de fábrica de ganancia (K_p) y tiempo integral (T_i). Sin embargo, si el ajuste de fábrica no es el óptimo, en esta pantalla pueden cambiarse la ganancia y el tiempo integral.

- La ganancia (K_p) puede ajustarse entre 0,1 y 20.
- El tiempo integral (T_i) puede ajustarse de 0,1 a 3600 segundos. Si se selecciona 3600 segundos, el controlador funcionará como un controlador P.
- Se puede también ajustar el controlador a control inverso, lo que quiere decir que si se aumenta el punto de ajuste, se reduce la velocidad. En el caso de control inverso, hay que ajustar la ganancia (K_p) entre -0,1 y -20.

La siguiente tabla muestra los ajustes propuestos del controlador:

	К _р		
Sistema/aplicación	Sistema de cale- facción ¹⁾	Sistema de refrige- ración ²⁾	Ti
	0,2		0,5
	SP, SP-G, S	SP-NE: 0,5	0,5
CUE	0	,2	0,5
p ()	SP, SP-G, S	SP-NE: 0,5	0,5
	0,2		0,5
	-2,5		100
	0,5	-0,5	10 + 5L ₂
	0,5		10 + 5L ₂
	0,5	-0,5	30 + 5L ₂ *
CUE 	0,5		0,5*
	0,5		L ₁ < 5 m: 0,5* L ₁ > 5 m: 3* L ₁ > 10 m: 5*

* T_i = 100 segundos (ajuste de fábrica).

- 1. Los sistemas de calefacción son sistemas donde un incremento del funcionamiento de la bomba causará una subida de temperatura en el sensor.
- 2. Los sistemas de refrigeración son sistemas donde un incremento del funcionamiento de la bomba causará una bajada de temperatura en el sensor.
- L_1 = Distancia en [m] entre bomba y sensor.
- L₂ = Distancia en [m] entre intercambiador de calor y sensor.

Cómo aiustar el controlador PI

Para la mayoría de las aplicaciones los ajustes de fábrica de las constantes K_p y T_i del controlador garantizan un funcionamiento óptimo de la bomba. No obstante, en algunas aplicaciones puede necesitarse un ajuste del controlador.

Proceder como se indica a continuación:

- 1. Aumentar la ganancia (K_p) hasta que el motor esté inestable. La inestabilidad puede verse observando si el valor medido comienza a fluctuar. Además, la inestabilidad es audible, ya que el motor empieza a tener un funcionamiento irregular. Dado que algunos sistemas, tales como controles de temperatura, son de reacción lenta, puede ser difícil observar que el motor está inestable.
- 2. Ajustar la ganancia (K_p) a la mitad del valor que hizo inestable al motor. Éste es el ajuste correcto de la ganancia.
- 3. Reducir el tiempo integral (T_i) hasta que el motor se haga inestable
- 4. Ajustar el tiempo integral (T_i) al doble del valor que produjo inestabilidad del motor. Éste es el ajuste correcto del tiempo integral.

Reglas generales:

- Si el controlador reacciona con demasiada lentitud, aumentar K_p.
- Si el controlador tiene un funcionamiento irregular o inestable, suavizar el sistema reduciendo K_p o aumentando T_i.

10.7.3 Punto de ajuste externo (3.3)

La entrada para la señal externa del punto de ajuste (terminal 53) puede ajustarse a los siguientes tipos:

- Activo
- No activo.

Si se selecciona Activo, el punto de ajuste actual recibe la influencia de la señal conectada a la entrada de punto de ajuste externo. Ver sección 13.2 Punto de ajuste externo.

10.7.4 Relés de señal 1 y 2 (3.4 y 3.5)

El CUE tiene dos relés de señal. En la siguiente pantalla, seleccionar en qué situaciones de funcionamiento debería activarse el relé de señal.

- Preparada
- Alarma
- Funcionamiento
- Bomba funcionando
- No activo
- Aviso
- Lubricar.

- Preparada
- Alarma
- Funcionamiento
- Bomba funcionando
- No activo
- Aviso
- Lubricar.

Sobre la distinción entre alarma y aviso, ver Nota sección 10.5.3 Indicaciones de fallo.

10.7.5 Botones del CUE (3.6)

Los botones de edición (+, -, On/Off, OK) del panel de control pueden ajustarse a estos valores:

- Activo •
- No activo.

Cuando estén ajustados a No activo (bloqueados), los botones de edición no funcionarán. Ajustar los botones a No activo si la bomba debe ser controlada mediante un sistema de control externo

Activar los botones pulsando las flechas de arriba y abajo simultáneamente durante 3 segundos.

10.7.6 Protocolo (3.7)

Esta pantalla muestra la selección de protocolo para el puerto RS-485 del CUE. El protocolo puede ajustarse a estos valores:

- GENIbus ٠
- FC
- FC MC. •

Si se selecciona GENIbus. la comunicación se aiusta de acuerdo con el estándar GENIbus de Grundfos. FC y FC MC es sólo para fines de mantenimiento.

10.7.7 Número de bomba (3.8)

Esta pantalla muestra el número de GENIbus. Se puede asignar un número entre 1 y 199 a la bomba. En el caso de comunicación con un bus hay que asignar un número a cada bomba. El ajuste de fábrica es "-".

10.7.8 Entradas digitales 2, 3 y 4 (3.9 a 3.11)

Las entradas digitales del CUE (terminal 19, 32 y 33) pueden ajustarse individualmente a diferentes funciones.

IQ

Seleccionar una de las siguientes funciones:

Mín. (curva mín.)

¢

- Máx. (curva máx.)
- Fallo ext. (fallo externo)

3.11 INSTALACIÓN

- Interruptor de caudal
- Reseteo alarma
- Funcionamiento en seco (de sensor externo)
- Caudal acumulado (caudal de impulso, sólo terminal 33)
- No activo.

La función seleccionada está activa cuando la entrada digital está activada (contacto cerrado). Ver también sección 13.1 Entradas digitales.

Mín.

Al activar la entrada, la bomba funciona según la curva mín.

Máx.

Al activar la entrada, la bomba funciona según la curva máx.

Fallo ext.

Un contador se pone en marcha al activar la entrada. Si la entrada está activada durante más de 5 seg., se indicará un fallo externo. Si la entrada se desactiva, la condición de fallo desaparecerá y sólo se podrá volver a arrancar la bomba manualmente reseteando la indicación de fallo.

Interruptor de caudal

Cuando esta función está seleccionada, la bomba parará cuando un interruptor de caudal conectado detecte un caudal bajo.

Sólo es posible utilizar esta función si la bomba está conectada a un sensor de presión o a un sensor de nivel y la función de parada está activada. Ver secciones *10.7.10* y *10.7.11*.

Reseteo alarma

Cuando la entrada se ha activado, la alarma se resetea si la causa de la alarma ya no existe.

Funcionamiento en seco

Cuando se selecciona esta función puede detectarse la ausencia de presión de entrada o la escasez de agua. Esto requiere el uso de un accesorio, como por ejemplo:

- un sensor de funcionamiento en seco Grundfos Liqtec[®]
- un presostato instalado en el lado de aspiración de una bomba
- un interruptor de nivel instalado en el lado de aspiración de una bomba.

Cuando se detecte falta de presión de entrada o escasez de agua (*Funcionamiento en seco*), la bomba se parará. La bomba no puede rearrancar mientras esté activada la entrada.

Los rearranques pueden retrasarse hasta 30 minutos, dependiendo de la familia de la bomba.

Caudal acumulado

Cuando esta función está ajustada para la entrada digital 4 y hay un sensor de impulsos conectado al terminal 33, puede medirse el caudal acumulado.

10.7.9 Entrada digital de caudal (3.12)

Entrada digital de caudal 100 l/impulso 3.12 INSTALACIÓN

Esta pantalla sólo aparece si se ha configurado un caudalímetro en la pantalla 3.11.

La pantalla se utiliza para ajustar el volumen para cada impulso para la función *caudal acumulado* con un sensor de impulsos conectado al terminal 33.

Intervalo de ajuste:

• 0 a 265 galones/impulso (0 a 1000 litros/impulso).

El volumen puede ajustarse en la unidad seleccionada en la guía de puesta en marcha.

10.7.10 Presión constante con función de parada (3.13)

Ajustes

La función de parada puede ajustarse a estos valores:

- Activo
- No activo.

La banda on/off puede ajustarse a estos valores:

- ΔH viene ajustada de fábrica al 10 % del punto de ajuste propiamente dicho.
- ΔH puede ajustarse entre el 5 % y el 30 % del punto de ajuste propiamente dicho.

Condiciones de funcionamiento para la función de parada

Sólo es posible utilizar la función de parada si el sistema incluye un sensor de presión, una válvula antirretorno y un tanque de diafragma.

Descripciones

La función de parada se utiliza para cambiar entre funcionamiento on/off a bajo caudal y funcionamiento continuo a alto caudal.

Fig. 50 Presión constante con función de parada. Diferencia entre las presiones de arranque y de parada (Δ H)

Puede detectarse caudal bajo de dos maneras diferentes:

- Una "función de detección de caudal bajo" integrada que funciona si la entrada digital no está configurada para interruptor de caudal.
- 2. Un interruptor de caudal conectado a la entrada digital.

1. Función de detección de caudal bajo

La bomba comprobará el caudal regularmente, reduciendo la velocidad durante unos instantes. Si no hay cambio o sólo hay poco cambio de la presión, quiere decir que hay un caudal bajo. La velocidad aumentará hasta que se alcance la presión de parada (punto de ajuste real + 0,5 x Δ H) y la bomba parará después de unos segundos. La bomba rearrancará como muy tarde cuando la presión haya bajado a la presión de arranque (punto de ajuste real – 0,5 x Δ H).

Si el caudal en el periodo de desconexión es superior al límite de caudal bajo, la bomba rearrancará antes de que la presión haya bajado a la presión de arranque.

Cuando rearranque, la bomba reaccionará de la siguiente manera:

- 1. Si el caudal es superior al límite de caudal bajo, la bomba volverá a funcionamiento continuo a presión constante.
- 2. Si el caudal es inferior al límite de caudal bajo, la bomba seguirá en funcionamiento de arranque/parada. Seguirá en funcionamiento de arranque/parada hasta que el caudal sea superior al límite de caudal bajo. Cuando el caudal sea superior al límite de caudal bajo, la bomba volverá a funcionamiento continuo.

2. Detección de caudal bajo con interruptor de caudal

Cuando la entrada digital esté activada porque hay caudal bajo, la velocidad aumentará hasta llegar a la presión de parada (punto de ajuste real + 0,5 x Δ H), y la bomba parará. La bomba arrancará de nuevo cuando la presión haya bajado a la presión de arranque. Si aún no hay caudal, la bomba llegará a la presión de parada y parará. Si hay caudal, la bomba seguirá funcionando de acuerdo con el punto de ajuste.

La válvula antirretorno siempre debe instalarse delante del sensor de presión. Ver figs. 51 y 52.

Precaución

Si se utiliza un interruptor de caudal para detectar caudal bajo, el interruptor debe instalarse en el lado del sistema después del depósito de diafragma.

Fig. 51 Posición de la válvula antirretorno y el sensor de presión en sistema con operación de altura de aspiración

TM03 8582 1907

Fig. 52 Posición de la válvula antirretorno y el sensor de presión en sistema con presión de entrada positiva

Depósito de diafragma

La función de parada requiere un tanque de diafragma de un tamaño mínimo. El depósito debe instalarse lo más cerca posible después de la bomba y la presión de precarga debe ser 0,7 x punto de ajuste real.

Tamaño recomendado del depósito de diafragma:

Caudal nominal de la bomba [gpm]	Tamaño típico del tanque de diafragma [galones]
0 a 26	2
27 a 105	4,4
106 a 176	14
177 a 308	34
309 a 440	62

Si se instala en el sistema un tanque de diafragma del tamaño arriba indicado, el ajuste de fábrica de ΔH es el correcto. Si el tanque instalado es demasiado pequeño, la bomba arrancará y parará con demasiada frecuencia. Esto puede corregirse incrementando ΔH .

10.7.11 Nivel constante con función de parada (3.13)

Ajustes

La función de parada puede ajustarse a estos valores:

- Activo
- No activo.

La banda on/off puede ajustarse a estos valores:

- ∆H viene ajustada de fábrica al 10 % del punto de ajuste propiamente dicho.
- Δ H puede ajustarse entre el 5 % y el 30 % del punto de ajuste propiamente dicho.

Una función de detección de caudal bajo integrada medirá y almacenará automáticamente el consumo de energía a aprox. el 50 % y el 85 % de la velocidad nominal.

Si se selecciona Activo, proceder de la siguiente manera:

- 1. Cerrar la válvula de aislamiento para crear una condición sin caudal.
- 2. Pulsar OK para iniciar el ajuste automático.

Condiciones de funcionamiento para la función de parada

Sólo es posible utilizar la función de parada de nivel constante si el sistema incluye un sensor de nivel y todas las válvulas pueden cerrarse.

Descripción

La función de parada se utiliza para cambiar entre funcionamiento on/off a bajo caudal y funcionamiento continuo a alto caudal

Fig. 53 Nivel constante con función de parada. Diferencia entre niveles de arrangue y parada (ΔH)

Puede detectarse caudal bajo de dos maneras diferentes:

- 1. Con la función de detección de bajo caudal integrada.
- 2. Con un interruptor de caudal conectado a una entrada digital.

1. Función de detección de caudal bajo

La detección de bajo caudal integrada se basa en la medición de velocidad v potencia.

Cuando se detecta caudal bajo, la bomba para. Cuando el nivel ha alcanzado el nivel de arrangue, la bomba arranca de nuevo. Si aún no hay caudal, la bomba llegará al nivel de parada y parará. Si hay caudal, la bomba seguirá funcionando de acuerdo con el punto de ajuste.

2. Detección de caudal bajo con interruptor de caudal

Cuando la entrada digital esté activada porque hay caudal bajo, la velocidad aumentará hasta llegar al nivel de parada (punto de ajuste real – 0,5 x Δ H), y la bomba parará. Cuando el nivel haya alcanzado el nivel de arrangue, la bomba arrancará de nuevo. Si aún no hay caudal, la bomba llegará al nivel de parada y parará. Si hay caudal, la bomba seguirá funcionando de acuerdo con el punto de ajuste.

10.7.12 Sensor 1 (3.15)

Ajuste del sensor 1 conectado al terminal 54. Éste es el sensor de retroalimentación.

Seleccionar entre los siguientes valores:

- Señal de salida del sensor: 0-20 mA 4-20 mA.
- Unidad de medida del sensor: bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Gama de medida del sensor.

10.7.13 Sensor 2 (3.16)

Aiuste del sensor 2 conectado a un módulo de entrada de sensor MCB 114.

Seleccionar entre los siguientes valores:

- Señal de salida del sensor: 0-20 mA 4-20 mA.
- Unidad de medida del sensor: bar, mbar, m, kPa, psi, ft, m³/h, m³/s, l/s, gpm, °C, °F, %.
- Intervalo de medida del sensor: 0-100 %

10.7.14 En servicio/standby (3.17)

Aiustes

La función en servicio/standby puede ajustarse a estos valores:

- Activo
- No activo

Activar la función en servicio/standby de la siguiente manera:

- 1. Conectar una de las bombas al suministro de red. Ajustar la función de en servicio/standby a No activo. Hacer los ajustes necesarios en el menú FUNCIONAMIENTO e INSTALACIÓN.
- 2. Ajustar el modo de funcionamiento a Parada en el menú FUNCIONAMIENTO.
- 3. Conectar la otra bomba al suministro de red. Hacer los ajustes necesarios en el menú FUNCIONAMIENTO e INSTALACIÓN.

Ajustar la función en servicio/standby a Activo.

La bomba en funcionamiento buscará a la otra bomba y ajustará automáticamente la función en servicio/standby de esta bomba a Activo. Si no puede encontrar la otra bomba, se indicará un fallo.

Las dos bombas deben estar conectadas eléctricamente mediante el GENIbus, y no debe haber nada más conectado en el GENIbus.

La función "En servicio/standby" se aplica a dos bombas conectadas en paralelo y controladas mediante el GENIbus. Cada bomba debe estar conectada a su propio CUE y su propio sensor.

Los objetivos principales de la función son los siguientes:

- Arrancar la bomba en standby si la bomba en servicio se para debido a una alarma.
- Alternar las bombas al menos cada 24 horas.

10.7.15 Intervalo de funcionamiento (3.18)

Cómo ajustar el rango de funcionamiento:

- Ajuste la velocidad mínima dentro del rango desde una velocidad mínima dependiente de la bomba a la velocidad máxima ajustada. El ajuste de fábrica depende de la familia a la que pertenezca la bomba.
- Ajustar la velocidad máxima dentro del rango desde la velocidad mínima ajustada a la velocidad máxima dependiente de la bomba. El ajuste efectuado en fábrica será igual al 100 %, es decir, la velocidad indicada en la placa de características de la bomba.

El área existente entre las velocidades mínima y máxima es el rango de funcionamiento real de la bomba.

El usuario puede modificar el rango de funcionamiento dentro del rango de velocidades dependiente de la bomba.

Para ciertas familias de bombas, será posible un funcionamiento sobresíncrono (velocidad máxima por encima del 100 %). Para ello se requiere un motor sobredimensionado para proporcionar la potencia en el eje que requiere la bomba durante su funcionamiento sobresíncrono.

Fig. 54 Ajuste de las curvas mín. y máx. en % de funcionamiento máximo

10.7.16 Control de los rodamientos de motor (3.19)

La función de control de los rodamientos de motor puede ajustarse a estos valores:

- Activo
- No activo.

Cuando la función esté ajustada a *Activo*, el CUE emitirá un aviso cuando los rodamientos del motor tengan que ser lubricados o sustituidos.

Descripción

La función de control de los rodamientos del motor se emplea para emitir una indicación cuando llega el momento de lubricar o sustituir los rodamientos del motor. Ver las pantallas 2.10 y 2.11. La indicación de aviso y el tiempo estimado tienen en cuenta si la bomba ha estado funcionando con velocidad reducida. La temperatura de los cojinetes se incluye en el cálculo si se instalan sensores de temperatura y se conectan a un módulo de entrada de sensor MCB 114. El contador seguirá contando incluso si la función se cambia a No activo, pero no se emitirá un aviso cuando sea el momento de volver a lubricar.

FM04 3581 4608

10.7.17 Confirmación de la lubricación/sustitución de los rodamientos del motor (3.20)

Esta función puede ajustarse a estos valores:

Lubricado

Nota

- Sustituido
- Nada realizado.

Cuando los rodamientos de motor hayan sido lubricados o sustituidos, confirmar esta acción en la pantalla de arriba presionando "OK".

El valor Lubricado no puede seleccionarse durante un periodo de tiempo después de confirmar la lubricación.

Lubricado

Cuando se ha confirmado el aviso Lubricar los rodamientos del motor,

- el contador se ajusta a 0.
- el número de lubricaciones aumenta en 1.

Cuando el número de lubricaciones ha llegado al número permitido, en la pantalla aparece el aviso *Sustituir los rodamientos del motor.*

Sustituidos

Cuando se ha confirmado el aviso Sustituir los rodamientos del motor,

- el contador se ajusta a 0.
- el número de lubricaciones se ajusta a 0.
- el número de cambios de los rodamientos aumenta en 1.

10.7.18 Sensor de temperatura 1 (3.21)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

Seleccionar la función de un sensor de temperatura Pt100/ Pt1000 1 conectado a un MCB 114:

- Cojinete del lado de acoplamiento
- · Cojinete del lado opuesto al acoplamiento
- Temp. otro líq. 1
- Temp. otro líg. 2
- Bobinado del motor
- Temp. líg. bombeado
- Temp. ambiente
- No activo.

10.7.19 Sensor de temperatura 2 (3.22)

Esta pantalla sólo se muestra si se ha instalado un módulo de entrada de sensor MCB 114.

Seleccionar la función de un sensor de temperatura Pt100/ Pt1000 2 conectado a un MCB 114:

- · Cojinete del lado de acoplamiento
- Cojinete del lado opuesto al acoplamiento
- Temp. otro líq. 1
- Temp. otro líq. 2
- Bobinado del motor
- Temp. líq. bombeado
- Temp. ambiente
- No activo.

10.7.20 Calefacción en parada (3.23)

La función de calefacción en parada puede ajustarse a estos valores:

- Activo
- No activo

Cuando la función se ajuste a *Activo* y la bomba se pare debido a una orden de parada, se aplicará una corriente a los devanados del motor.

La función de calefacción en parada precalienta el motor para evitar la condensación.

10.7.21 Aceleración y deceleración graduales (3.24)

Ajustar el tiempo para cada uno de los dos procesos, de aceleración gradual y de deceleración gradual:

- Ajuste de fábrica:
 - En función de la magnitud de la potencia.
- El intervalo del parámetro de aceleración/deceleración gradual: 1-3600 s.

El tiempo de aceleración gradual es el tiempo de aceleración desde 0 rpm hasta la velocidad nominal del motor. Elegir un tiempo de aceleración gradual tal que la corriente de salida no supere el límite de corriente máxima para el CUE.

El tiempo de deceleración gradual es el tiempo de deceleración desde la velocidad nominal del motor hasta 0 rpm. Elegir un tiempo de deceleración gradual tal que no se produzca ninguna sobretensión y que la corriente generada no supere el límite de corriente máxima para el CUE.

Velocidad

Fig. 55 Aceleración gradual y deceleración gradual, pantalla 3.24

11. Ajuste mediante productos E PC Tool

Los requisitos de configuración especial distintos a los ajustes disponibles a través del CUE requieren el uso de productos E PC Tool de Grundfos. De nuevo, esto requiere la asistencia de un ingeniero o técnico de mantenimiento de Grundfos. Contactar con la empresa Grundfos más cercana para más información.

12. Prioridad de ajustes

El botón on/off tiene la prioridad más alta. En estado "off", el funcionamiento de la bomba no es posible.

El CUE puede controlarse de varias formas al mismo tiempo. Si hay dos o más modos de funcionamiento activos al mismo tiempo, prevalecerá el modo de funcionamiento con la prioridad más alta.

12.1 Control sin señal de bus, modo de funcionamiento local

Prioridad	Menú del CUE	Señal externa
1	Parada	
2	Máx.	
3		Parada
4		Máx.
5	Mín.	Mín.
6	Normal	Normal

Ejemplo: Si se ha activado una señal externa en el modo de funcionamiento *Máx.*, sólo será posible parar la bomba.

12.2 Control con señal de bus, modo de funcionamiento por control remoto

Priori- dad	Menú del CUE	Señal externa	Señal de bus
1	Parada		
2	Máx.		
3		Parada	Parada
4			Máx.
5			Mín.
6			Normal

Ejemplo: Si la señal de bus ha activado el modo de funcionamiento *Máx.*, sólo será posible parar la bomba.

13. Señales de control externas

13.1 Entradas digitales

El resumen muestra funciones relacionadas con contacto cerrado.

Terminal	Тіро	Función
18	DI 1	• Arranque/parada de la bomba
19	DI 2	 Mín. (curva mín.) Máx. (curva máx.) Fallo ext. (fallo externo) Interruptor de caudal Reseteo alarma Funcionamiento en seco (de sensor externo) No activo.
32	DI 3	 Mín. (curva mín.) Máx. (curva máx.) Fallo ext. (fallo externo) Interruptor de caudal Reseteo alarma Funcionamiento en seco (de sensor externo) No activo.

Terminal Tipo	Función
33 DI 4	 Mín. (curva mín.) Máx. (curva máx.) Fallo ext. (fallo externo) Interruptor de caudal Reseteo alarma Funcionamiento en seco (de sensor externo). Caudal acumulado (caudal de impulsos) No activo.

No debe seleccionarse la misma función para más de una entrada. Ver fig. 21.

13.2 Punto de ajuste externo

Terminal	Тіро	Función
53	AI 1	 Punto de ajuste externo (0-10 V)

Se puede fijar a distancia el punto de ajuste mediante la conexión de un transmisor de señal analógica a la entrada del punto de ajuste (terminal 53).

Bucle abierto

En modo de control *Bucle abierto* (curva constante), se puede fijar el punto de ajuste real externamente dentro del intervalo entre la curva mín. y el punto de ajuste fijado mediante el menú del CUE. Ver fig. 56.

Fig. 56 Relación entre el punto de ajuste propiamente dicho y la señal del punto de ajuste externo en el modo de control de bucle abierto

Bucle cerrado

En todos los demás modos de control, excepto presión diferencial proporcional, se puede fijar el punto de ajuste real externamente dentro del intervalo entre el valor inferior del intervalo de medida del sensor (sensor mín.) y el punto de ajuste fijado mediante el menú del CUE. Ver fig. 57.

Fig. 57 Relación entre el punto de ajuste propiamente dicho y la señal del punto de ajuste externo en modo de control controlado

Ejemplo: Con un valor mín. del sensor de 0 bar, un punto de ajuste fijado mediante el menú del CUE de 3 bar y un punto de ajuste externo del 80 %, el punto de ajuste real será como sigue:

Punto de ajuste real (punto de ajuste fijado mediante el menú del CUE – sensor mín.) x % señal del punto de ajuste externo + sensor mín. = (3 – 0) x 80 % + 0 = 2,4 bar.

Presión diferencial proporcional

En el modo de control *Presión diferencial proporcional*, se puede fijar el punto de ajuste real externamente entre el 25 % de la altura máxima y el punto de ajuste fijado mediante el menú del CUE. Ver fig. 58.

Ejemplo: Con una altura máx. de 12 metros, un punto de ajuste de 6 metros fijado mediante el menú del CUE y un punto de ajuste externo del 40 %, el punto de ajuste real será como sigue:

Punto de ajuste real (punto de ajuste, menú del CUE – 25 % de la = altura máxima) x % señal externa del punto de ajuste + 25 % de la altura máxima = (6 – 12 x 25 %) x 40 % + 12/4

13.3 Señal GENIbus

El CUE admite comunicación en serie mediante una entrada RS-485. La comunicación se realiza de acuerdo con el protocolo GENIbus de Grundfos, y permite la conexión a un sistema de gestión de edificios o a otro sistema de control externo.

Los parámetros de funcionamiento, como el punto de ajuste y modo de funcionamiento, pueden ajustarse a distancia mediante la señal de bus. La bomba puede al mismo tiempo proporcionar información del estado de parámetros importantes, tales como el valor actual del parámetro de control, potencia absorbida e indicaciones de fallos.

Contactar con Grundfos para más detalles.

Nota Si se utiliza una señal de bus, se reducirá el número de ajustes posibles mediante el CUE.

13.4 Otros estándares de bus

Grundfos ofrece varias soluciones de bus con comunicación de acuerdo con otros estándares.

Contactar con Grundfos para más detalles.

14. Mantenimiento y reparación

14.1 Limpieza del CUE

Mantener limpias las aletas de refrigeración y las aspas del ventilador para garantizar una refrigeración suficiente del CUE.

14.2 Repuestos y kits de mantenimiento

Para más información sobre repuestos y kits de mantenimiento, visitar www.grundfos.com > Sitio web internacional > WebCAPS.

15.1 Lista de avisos y alarmas

		Estado						
Text códi	Aviso	Alarma	Alarma bloqueada	Modo de funcio- namiento	Rese- teo			
1	Corriente de fuga demasiado alta			•	Parada	Man.		
2	Fallo de fase de red		•		Parada	Aut.		
3	Fallo externo		•		Parada	Man.		
16	Otro fallo		•		Parada	Aut.		
				•	Parada	Man.		
30	Sustituir los rodamien- tos del motor	•			-	Man. ³⁾		
32	Sobrevoltaje	•			-	Aut.		
			•		Parada	Aut.		
40	Voltaje insuficiente	•			–	Aut.		
			•		Parada	Aut.		
48	Sobrecarga		•	•	Parada	Man		
49	Sobrecarda		•	•	Parada	Aut		
	e con cour gu	•			_	Aut.		
55	Sobrecarga		•		Parada	Aut.		
57	Funcionamiento en seco		•		Parada	Aut.		
64	Temperatura del CUE demasiado alta		•		Parada	Aut.		
70	Temperatura del motor demasiado alta		•		Parada	Aut.		
77	En servicio/standby, Fallo de comunicación	•			_	Aut.		
89	Sensor 1 fuera del intervalo		•		1)	Aut.		
91	Sensor de temperatura 1 fuera del intervalo	•			-	Aut.		
93	Sensor 2 fuera del intervalo	•			-	Aut.		
96	Señal del punto de ajuste fuera del inter- valo		•		1)	Aut.		
1/18	Temperatura del coji-	٠			-	Aut.		
140	nete demasiado alta		•		Parada	Aut.		
149	Temperatura del coji-	•			-	Aut.		
	nete demasiado alta		•		Parada	Aut.		
155	Inrush tault		•		Parada	Aut.		
175	2 fuera del intervalo	•			-	Aut.		
240	Lubricar rodamientos del motor	•			-	Man. ³⁾		
241	Fallo de fase del motor	•	•		– Parada	Aut. Aut.		
242	AAM ²⁾ no se realizó con éxito	•			-	Man.		

- ¹⁾ En caso de alarma, el CUE cambiará el modo de funcionamiento en función del tipo de bomba.
- ²⁾ AAM, adaptación automática del motor.
- ³⁾ El aviso se resetea en la pantalla 3.20.

15.2 Reseteo de alarmas

En caso de fallo o funcionamiento incorrecto del CUE, comprobar la lista de alarmas en el menú FUNCIONAMIENTO. En los menús de registro pueden encontrarse las cinco últimas alarmas y los cinco últimos avisos.

Contactar con un técnico de Grundfos si se produce una alarma de forma repetida.

15.2.1 Aviso

El CUE seguirá funcionando mientras el aviso esté activo. El aviso permanece activo hasta que la causa ya no existe. Algunos avisos pueden cambiar a condición de alarma.

15.2.2 Alarma

En caso de alarma, el CUE parará la bomba o cambiará el modo de funcionamiento dependiendo del tipo de alarma y el tipo de bomba. Ver sección *15.1 Lista de avisos y alarmas*.

El funcionamiento de la bomba se reanudará cuando se haya solucionado la causa de la alarma y se haya reseteado la alarma.

Reseteo manual de una alarma

- Pulsar OK en la pantalla de la alarma.
- Pulsar On/Off dos veces.
- Activar una entrada digital DI 2-DI 4 fijada en Reseteo de alarma o la entrada digital DI 1 (Arranque/parada).

Si no es posible resetear una alarma, el motivo puede ser que no se haya solucionado el fallo, o que la alarma se haya bloqueado.

15.2.3 Alarma bloqueada

En caso de alarma bloqueada, el CUE parará la bomba y se bloqueará. El funcionamiento de la bomba no puede reanudarse hasta que se haya solucionado la causa de la alarma bloqueada y se haya reseteado la alarma.

Reseteo de una alarma bloqueada

 Cortar la alimentación eléctrica al CUE durante aprox.
 30 segundos. Conectar la alimentación eléctrica y pulsar OK en la pantalla de la alarma para resetear la alarma.

15.3 Luces testigo

La tabla muestra la función de las luces testigo.

Luz testigo	Función
	La bomba está funcionando o se ha parado debido a una función de parada.
Encendida (verde)	Si está parpadeando, la bomba ha sido parada por el usuario (menú del CUE), arranque/parada externa o bus.
Apagada (naranja)	La bomba se ha parado con el botón on/off.
Alarma (roja)	Indica una alarma o un aviso.

15.4 Relés de señal

La tabla muestra la función de los relés de señal.

Тіро	Función	
	Preparada	Bomba funcionando
Relé 1	• Alarma	• Aviso
	Funcionamiento	• Lubricar.
	 Preparada 	Bomba funcionando
Relé 2	• Alarma	• Aviso
	 Funcionamiento 	Lubricar.

Ver también la fig. 30.

16. Datos técnicos

16.1 Carcasa

Los tamaños de cuadros individuales del CUE se caracterizan por sus carcasas. La tabla muestra la relación entre grado de protección y tipo de carcasa.

Ejemplo:

Leer de la placa de características:

- Tensión de alimentación = 3 x 380-500 V.
- Potencia típica del eje = 1,5 kW.
- Grado de protección = IP20.

La tabla muestra que la carcasa del CUE es A2.

Potenci	ia típica	Carcasa										
del e	je P2	1	x 200-240	V	3 x 20	0-240 V	3 x 38	0-500 V	3 x 52	3 x 525-600 V		5-690 V
[kW]	[HP]	IP20 NEMA0	IP21 NEMA1	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP20 NEMA0	IP55 NEMA12	IP21 NEMA1	IP55 NEMA12
0,55	0,75											
0,75	1			_								
1,1	1,5	A3		A5	10		4.2	۸ <i>Б</i>				
1,5	2				AZ	۸.5	AZ	AS	A3	A5		
2,2	3		P1	P1		A3						
3	4		ы	ы	٨2							
3,7	5				AS							
4	5			_			A2					
5,5	7,5		B1	B1			12	A5	A3	A5		
7,5	10		B2	B2	B3	B1	AJ					
11	15											
15	20				R4	B2	B3	B1				
18,5	25				54						B2	B2
22	30				<u></u>	C1		P2				
30	40				05		B4	02				
37	50				C4	C2						
45	60				04	02	C2	C1				
55	75						03				C2	C2
75	100						C1	C2				
90	125						04	02				

Ε

Fig. 59 Carcasas A2 y A3

Fig. 60 Carcasas A5, B1, B2, B3, B4, C1, C2, C3 y C4

0	Altura	ı [in] ¹⁾	Anchu	Anchura [in] ¹⁾		Profundidad [in] 1)		ificios ro	Dece (iii)		
Carcasa	Α	а	В	b	С	C 2)	С	Ød	Øe	f	Peso [ib]
A2	10,6	10,1	3,5	2,8	8,1	8,6	0,31	0,43	0,22	0,35	10,8
con opción IP21/NEMA1	14,8	13,8	3,5	2,8	8,1	8,6	0,31	0,43	0,22	0,35	11,7
A3	10,6	10,1	5,1	4,3	8,1	8,6	0,31	0,43	0,22	0,35	14,6
con opción IP21/NEMA1	14,8	13,8	5,1	4,3	8,1	8,6	0,31	0,43	0,22	0,35	15,4
A5	16,5	15,8	9,5	8,5	7,9	7,9	0,32	0,47	0,26	0,35	30,9
B1	18,9	17,9	9,5	8,3	10,2	10,2	0,47	0,75	0,35	0,35	50,7
B2	25,6	24,6	9,5	8,3	10,2	10,2	0,47	0,75	0,35	0,35	59,5
B3	15,7	15,0	6,5	5,5	9,8	10,3	0,31	0,47	0,27	0,31	26,5
con opción IP21/NEMA1	18,7	-	6,5	-	9,8	10,3	0,31	0,47	0,27	0,31	-
B4	20,5	19,5	9,1	7,9	9,5	9,5	-	-	0,33	0,59	51,8
con opción IP21/NEMA1	26,4	-	10,0	-	9,7	9,7	-	-	0,33	0,59	-
C1	26,8	25,5	12,1	10,7	12,2	12,2	0,47	0,75	0,35	0,39	99,2
C2	30,3	29,1	14,6	13,1	13,2	13,2	0,47	0,75	0,35	0,39	143
C3	21,7	20,5	12,1	10,6	13,1	13,1	-	-	0,33	0,67	77,2
con opción IP21/NEMA1	29,7	-	13,0	-	13,3	13,3	-	-	0,33	0,67	-
C4	26,0	24,8	14,6	13,0	13,1	13,1	-	-	0,33	0,67	110
con opción IP21/NEMA1	37,4	-	15,4	-	13,3	13,3	-	-	0,33	0,67	_

TM03 9000 2807

¹⁾ Las dimensiones son altura, anchura y profundidad máximas.

16.3 Entorno

Humedad relativa	5-95 % RH
Temperatura ambiente	Máx. 50 °C
Temperatura ambiente media durante 24 horas	Máx. 45° C
Temperatura ambiente mínima en funcionamiento total	0 °C
Temperatura ambiente mínima en funcionamiento reducido	−10 °C
Temperatura durante almacenamiento y transporte	De –25 a 65 °C
Duración del almacenamiento	Máx. 6 meses
Altitud máxima sobre el nivel del mar sin reducción de rendimiento	1000 metros
Altitud máxima sobre el nivel del mar con reducción del rendimiento	3000 metros

Е

El CUE viene en un embalaje que no es adecuado Nota para el almacenamiento al aire libre.

16.4 Pares de apriete del terminal

C	Par de apriete [lb-pies]								
Carcasa	Red	Motor	Tierra	Relé					
A2	1,3	1,3	2,2	0,4					
A3	1,3	1,3	2,2	0,4					
A5	1,3	1,3	2,2	0,4					
B1	1,3	1,3	2,2	0,4					
B2	3,3	3,3	2,2	0,4					
B3	1,3	1,3	2,2	0,4					
B4	3,3	3,3	2,2	0,4					
C1	7,4	7,4	2,2	0,4					
C2	10,3 ¹⁾ / 17,7 ²⁾	10,3 ¹⁾ / 17,7 ²⁾	2,2	0,4					
C3	7,4	7,4	2,2	0,4					
C4	10,3 ¹⁾ / 17,7 ²⁾	10,3 ¹⁾ / 17,7 ²⁾	2,2	0,4					

 $^{1)}$ Sección transversal del conductor \leq 4/0 AWG. $^{2)}$ Sección transversal del conductor \geq 4/0 AWG.

16.5 Longitud de cable

Longitud máxima, cable del motor apantallado	150 metros
Longitud máxima, cable de motor sin apantallar	300 metros
Longitud máxima, cable de señal	300 metros

16.6 Fusibles y sección transversal de cable

Aviso

Respetar siempre las normativas nacionales y locales referentes a secciones transversales de cables.

16.6.1 Sección transversal del cable a terminales de señal

Sección transversal máxima del cable a terminales de señal, conductor rígido	14 AWG
Sección transversal máxima del cable a terminales de señal, conductor flexible	18 AWG
Sección transversal mínima del cable a terminales de señal	20 AWG

16.6.2 Fusibles no UL y sección transversal del conductor a red y motor

Potencia típica del eje P2	Tamaño de fusible máximo	Tipo de fusible	Sección transversal máxima del conductor
[kW]	[A]		[mm ²]
1 x 200-240 V			· ·
1.1	20	gG	4
1.5	30	gG	10
2.2	40	gG	10
3	40	gG	10
3.7	60	gG	10
5.5	80	gG	10
7.5	100	gG	35
3 x 200-240 V			
0.75	10	gG	4
1.1	20	gG	4
1.5	20	gG	4
2.2	20	gG	4
3	32	gG	4
3.7	32	gG	4
5.5	63	gG	10
7.5	63	gG	10
11	63	gG	10
15	80	gG	35
18.5	125	gG	50
22	125	gG	50
30	160	gG	50
37	200	aR	95
45	250	aR	120
3 x 380-500 V			
0.55	10	gG	4
0.75	10	gG	4
1.1	10	gG	4
1.5	10	gG	4
2.2	20	gG	4
3	20	gG	4
4	20	gG	4
5.5	32	gG	4
7.5	32	gG	4
11	63	gG	10
15	63	gG	10
18.5	63	gG	10
22	63	gG	35
30	80	gG	35
37	100	gG	50
45	125	gG	50
55	160	gG	50
75	250	aR	95
90	250	aR	120
3 x 525-600 V			
0.75	10	gG	4
1.1	10	gG	4
1.5	10	gG	4
2.2	20	gG	4
3	20	gG	4
4	20	gG	4
5.5	32	gG	4
7.5	32	gG	4
3 x 525-690 V		<u> </u>	
11	63	qG	35
15	63	qG	35
18.5	63	gG	35
22	63	gG	35
		-	

Potencia típica del eje P2	Tamaño de fusible máximo	Tipo de fusible	Sección transversal máxima del conductor
[kW]	[A]		[mm ²]
30	63	gG	35
37	80	gG	95
45	100	gG	95
55	125	gG	95
75	160	gG	95
90	160	gG	95

 Cable de motor apantallado, cable de alimentación sin apantallar. AWG, ver sección 16.6.3.

16.6.3 Fusibles UL y sección transversal de conductor a red y motor

Potencia típica				Tipo de fu	usible			Sección transversal
del eje P2	Bussmann	Bussmann	Bussmann	SIBA	Littel Fuse	Ferraz-Shawmut	Ferraz-Shawmut	máxima del conductor
[kW]	RK1	J	т	RK1	RK1	CC	RK1	[AWG] ²⁾
1 x 200-240 V								
1,1	KTN-R20	-	-	-	-	-	-	10
1,5	KTN-R30	-	-	_	-	-	-	7
2,2	KTN-R40	-	-	-	-	-	-	7
3	KIN-R40	-	-	-	-	-	-	/
3,7	KIN-R60	_	_	_	_	-	-	/
7.5								2
3 x 200-240 V								2
0.75	KTN-R10	JKS-10	JJN-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
1.1	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
1.5	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
2,2	KTN-R20	JKS-20	JJN-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3,7	KTN-R30	JKS-30	JJN-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
5,5	KTN-R50	JKS-50	JJN-50	5012406-050	KLN-R50	-	A2K-50R	7
7,5	KTN-R50	JKS-60	JJN-60	5012406-050	KLN-R60	-	A2K-50R	7
11	KTN-R60	JKS-60	JJN-60	5014006-063	KLN-R60	A2K-60R	A2K-60R	7
15	KTN-R80	JKS-80	JJN-80	5014006-080	KLN-R80	A2K-80R	A2K-80R	2
18,5	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
22	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R	A2K-125R	1/0
30	FWX-150	-	-	2028220-150	L25S-150	A25X-150	A25X-150	1/0
37	FWX-200	-	-	2028220-200	L25S-200	A25X-200	A25X-200	4/0
45	FWX-250	-	-	2028220-250	L25S-250	A25X-250	A25X-250	250 MCM
3 x 380-500 V		11/0 40	110.40	5047000 040			A0K 40D	40
0,55	KIS-RIU	JKS-10	JJS-10	5017906-010			A2K-10R	10
0,75	KTS-R10	JKS-10	JJS-10	5017906-010			A2K-10R	10
1,1	KTS-R10	JKS-10	JJS-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
22	KTS-R20	IKS-20	118-20	5017906-020	KTN-R20	ATM-R10	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
11	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
15	KTS-R40	JKS-40	JJS-40	5014006-040	KLS-R40	-	A6K-40R	7
18,5	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	-	A6K-50R	7
22	KTS-R60	JKS-60	JJS-60	5014006-063	KLS-R60	-	A6K-60R	2
30	KTS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	-	A6K-80R	2
37	KTS-R100	JKS-100	JJS-100	2028220-125	KLS-R100	-	A6K-100R	1/0
45	KTS-R125	JKS-150	JJS-150	2028220-125	KLS-R125	-	A6K-125R	1/0
55	KTS-R150	JKS-150	JJS-150	2028220-160	KLS-R150	-	A6K-150R	1/0
75	FWH-220	_	-	2028220-200	L50S-225	-	A50-P225	4/0
90	FWH-250	-	-	2028220-250	L50S-250	-	A50-P250	250 MCM
3 X 525-600 V	KTS P10	IKS 10	118 10	5017006 010			A2K 10P	10
0,70	KTS-RIU	JKS-10	118-10	5017906-010	KTN-R10		A2K-10K	10
1,1	KTS-R10	IKS-10	US-10	5017906-010	KTN-R10	ATM-R10	A2K-10R	10
22	KTS-R20	JKS-20		5017906-020	KTN-R20	ATM-R20	A2K-20R	10
3	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
4	KTS-R20	JKS-20	JJS-20	5017906-020	KTN-R20	ATM-R20	A2K-20R	10
5,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
7,5	KTS-R30	JKS-30	JJS-30	5012406-032	KTN-R30	ATM-R30	A2K-30R	10
3 x 525-690 V								
11	KTS-R-25	JKS-25	JJS-25	5017906-025	KLSR025	HST25	A6K-25R	1/0
15	KTS-R-30	JKS-30	JJS-30	5017906-030	KLSR030	HST30	A6K-30R	1/0
18,5	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
22	KTS-R-45	JKS-45	JJS-45	5014006-050	KLSR045	HST45	A6K-45R	1/0
30	KTS-R-60	JKS-60	JJS-60	5014006-063	KLSR060	HST60	A6K-60R	1/0
37	KTS-R-80	JKS-80	JJS-80	5014006-080	KLSR075	HST80	A6K-80R	1/0
45	KTS-R-90	JKS-90	JJS-90	5014006-100	KLSR090	HST90	A6K-90R	1/0
55	KTS-R-100	JKS-100	JJS-100	5014006-100	KLSR100	HST100	A6K-100R	1/0
75	KTS-R125	JKS-125	JJS-125	2028220-125	KLS-125	HST125	A6K-125R	1/0
90	KTS-R150	JKS-150	JUS-150	2028220-150	KLS-150	HST150	A6K-150R	1/0

 90
 KTS-R150
 JKS-150
 JJS-150
 2028220-150
 KLS-150
 HST150

 ¹⁾ Cable de motor apantallado, cable de alimentación sin apantallar.
 ²⁾ American Wire Gauge.

16.7 Entradas y salidas

16.7.1 Suministro de red (L1, L2, L3)

Tensión de alimentación	200-240 V ± 10 %
Tensión de alimentación	380-500 V ± 10 %
Tensión de alimentación	525-600 V ± 10 %
Tensión de alimentación	525-690 V ± 10 %
Frecuencia	50/60 Hz
Desproporción temporal máxima entre fases	3 % del valor nominal
Corriente de fuga a tierra	> 3,5 mA
Número de conexiones, carcasa A	Máx. 2 veces/min.
Número de conexiones, carcasas B y C	Máx. 1 vez/min.

16.7.2 Salida de motor (U, V, W)

Tensión de salida	0-100 % ¹⁾
Frecuencia de salida	0-100 Hz ²⁾
Activación salida	No se recomienda

¹⁾ Tensión de salida en % de tensión de alimentación.

²⁾ Dependiendo de la familia de bomba seleccionada.

16.7.3 Conexión GENIbus RS-485

Número de terminal	68 (A), 69 (B), 61 GND (Y)

El circuito RS-485 está funcionalmente separado de otros circuitos centrales y galvánicamente separado de la tensión de alimentación (PELV).

16.7.4 Entradas digitales

Número de terminal	18, 19, 32, 33
Nivel de tensión	0-24 VDC
Nivel de tensión, contacto abierto	> 19 VDC
Nivel de tensión, contacto cerrado	< 14 VDC
Tensión máxima en la entrada	28 VDC
Resistencia de entrada, Ri	Aprox. 4 kΩ

Todas las entradas digitales están galvánicamente separadas de la tensión de alimentación (PELV) y otros terminales de alta tensión.

16.7.5 Relés de señal

Relé 01, número de terminal	1 (C), 2 (NO), 3 (NC)
Relé 02, número de terminal	4 (C), 5 (NO), 6 (NC)
Carga máxima del terminal (AC-1) ¹⁾	240 VAC, 2 A
Carga máxima del terminal (AC-15) ¹⁾	240 VAC, 0,2 A
Carga máxima del terminal (DC-1) ¹⁾	50 VDC, 1 A
Carga mínima del terminal	24 V DC 10 mA
	24 V AC 20 mA

¹⁾ IEC 60947, partes 4 y 5.

C = Común

NO = Normalmente abierto

NC = Normalmente cerrado

Los contactos de relés están galvánicamente separados de otros circuitos por aislamiento reforzado (PELV).

16.7.6 Entradas analógicas

Entrada analógica 1,	53
número de terminal	
Señal de tensión	A53 = "U" ¹⁾
Gama de tensión	0-10 V
Resistencia de entrada, R _i	Aprox. 10 kΩ
Tensión máxima	± 20 V
Señal de intensidad	A53 = "I" ¹⁾
Gama de intensidad	0-20, 4-20 mA
Resistencia de entrada, R _i	Aprox. 200 Ω
Intensidad máxima	30 mA
Fallo máximo, terminales 53, 54	0,5 % de escala completa
Entrada analógica 2, número de terminal	54
Señal de intensidad	A54 = "I" ¹⁾
Gama de intensidad	0-20, 4-20 mA
Resistencia de entrada, R _i	Aprox. 200 Ω
Intensidad máxima	30 mA
Fallo máximo, terminales 53, 54	0.5 % de escala completa

1) El ajuste de fábrica es la señal de tensión "U".

Todas las entradas analógicas están galvánicamente separadas de la tensión de alimentación (PELV) y otros terminales de alta tensión.

16.7.7 Salida analógica

Salida analógica 1, número de terminal	42
Gama de intensidad	0-20 mA
Carga máxima a tierra	500 Ω
Fallo máximo	0,8 % de escala completa

La salida analógica está galvánicamente separada de la tensión de alimentación (PELV) y otros terminales de alta tensión.

16.7.8 Módulo de entrada MCB 114

Entrada analógica 3, número de terminal	2
Gama de intensidad	0/4-20 mA
Resistencia de entrada	< 200 Ω
Entradas analógicas 4 y 5, número de terminal	4, 5 y 7, 8
Tipo de señal, 2 o 3 cables	Pt100/Pt1000

Nota

 \Box Cuando se utiliza Pt100 con cable de 3 hilos, la resistencia no debe superar los 30 Ω .

16.8 Nivel de ruido

El ruido del CUE es como máximo de 70 dB(A).

El nivel de ruido de un motor controlado por un convertidor de frecuencia puede ser superior al de un motor correspondiente que no esté controlado por un convertidor de frecuencia. Ver sección *6.7 Filtros RFI*.

17. Eliminación

La eliminación de este producto o partes de él debe realizarse de forma respetuosa con el medio ambiente:

- 1. Utilizar el servicio local, público o privado, de recogida de residuos.
- 2. Si esto no es posible, contactar con la compañía o servicio técnico Grundfos más cercano.

U.S.A.

GRUNDFOS Pumps Corporation 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Telefax: +1-913-227-3500

Canada

GRUNDFOS Canada Inc. 2941 Brighton Road Oakville, Ontario L6H 6C9 Phone: +1-905 829 9533 Telefax: +1-905 829 9512

México

Bombas GRUNDFOS de México S.A. de C.V. Boulevard TLC No. 15 Parque Industrial Stiva Aeropuerto Apodaca, N.L.C.P. 66600 Phone: +52-81-8144 4000 Telefax: +52-81-8144 4010

L-CUE-TL-10 1009

98806765 1009 Repl. 98806765 1008

© 2008 - 2009 Grundfos Pumps Corp.

The name Grundfos, the Grundfos logo, and the payoff Be–Think–Innovate are registrated trademarks owned by Grundfos Management A/S or Grundfos A/S, Denmark. All rights reserved worldwide.

